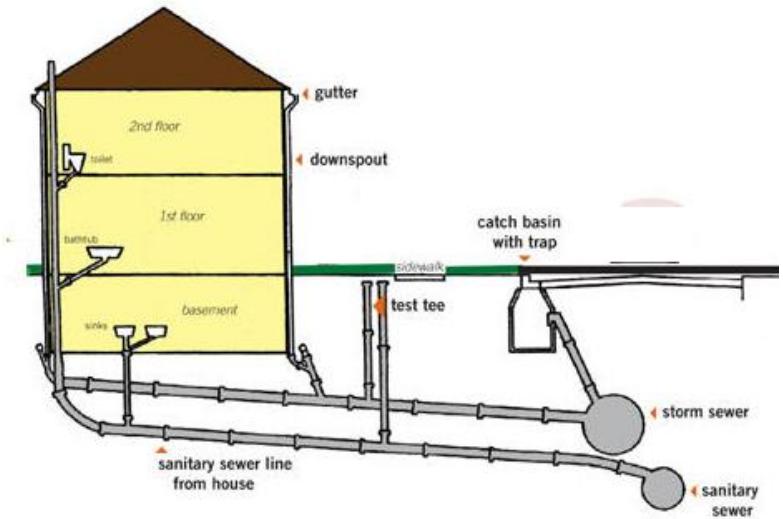
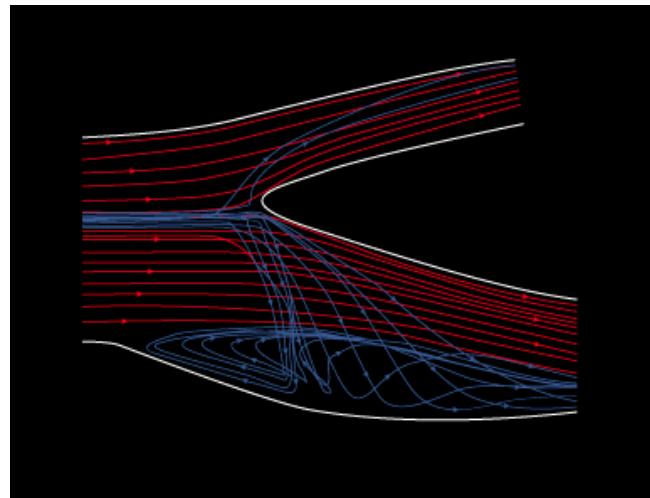
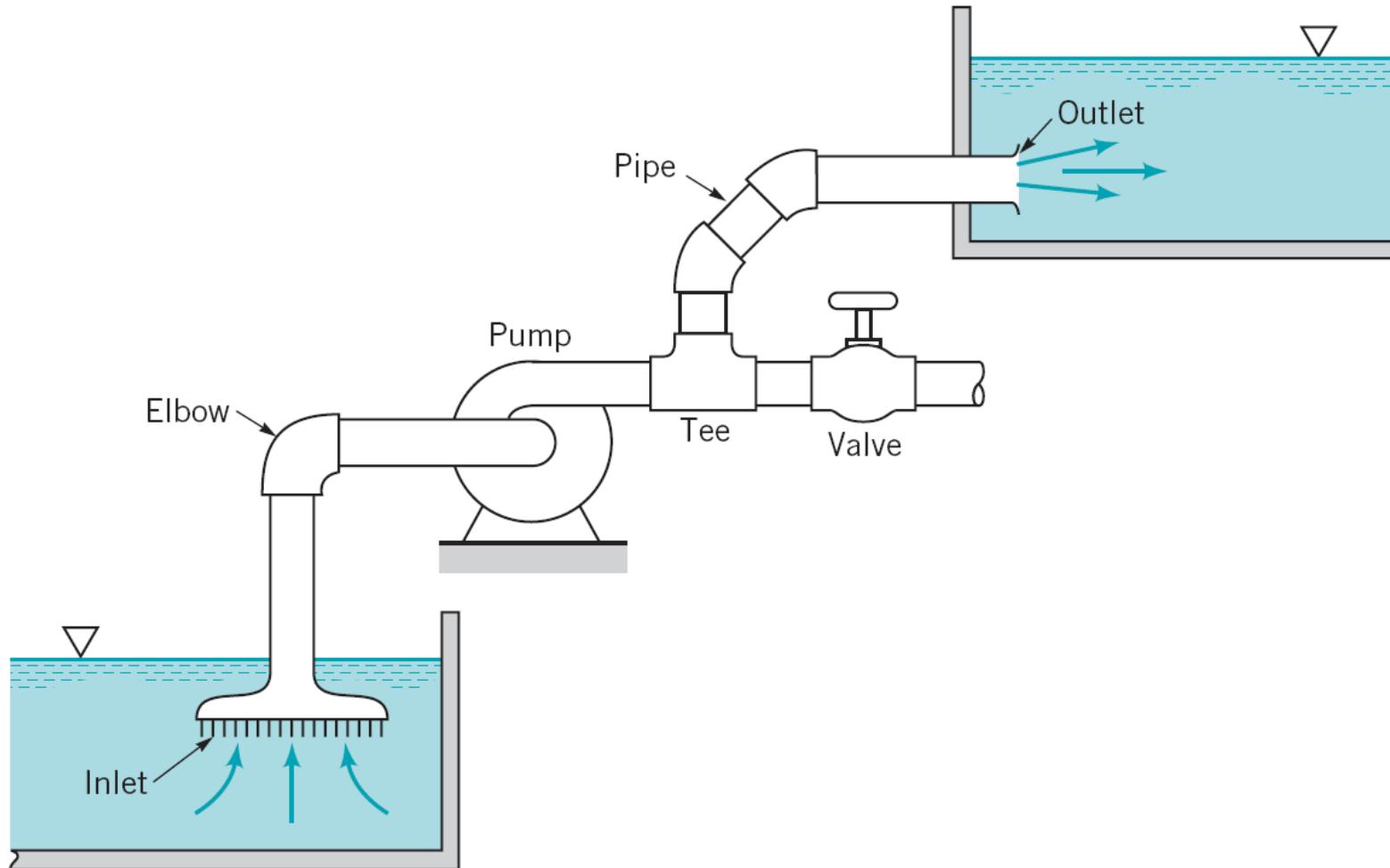


Viscous flow in pipes

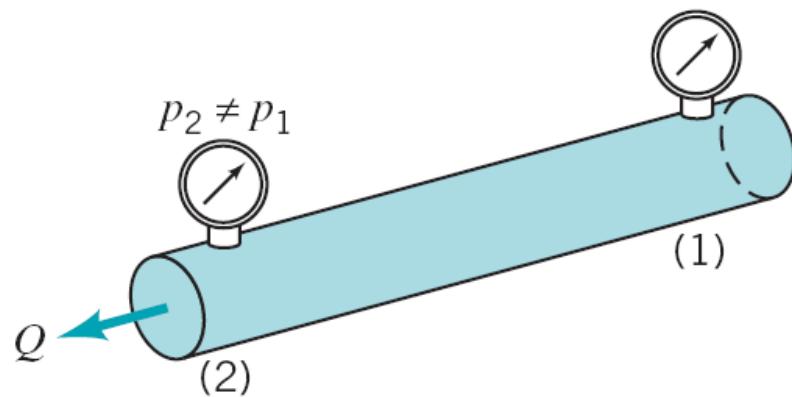


Pipe flow is a crucial aspect of fluid mechanics

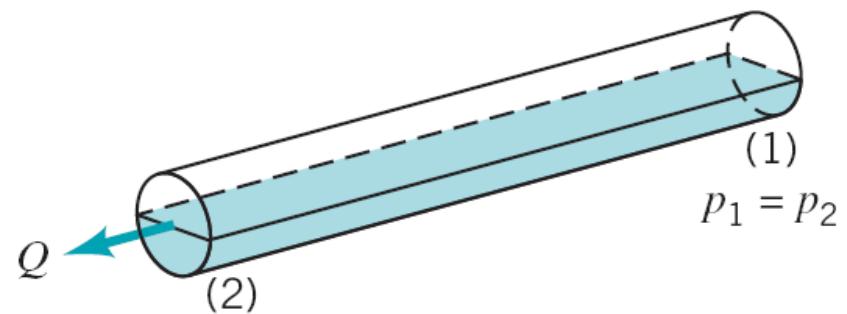
Typical pipe system components.



Pipe flow (pressure-driven)

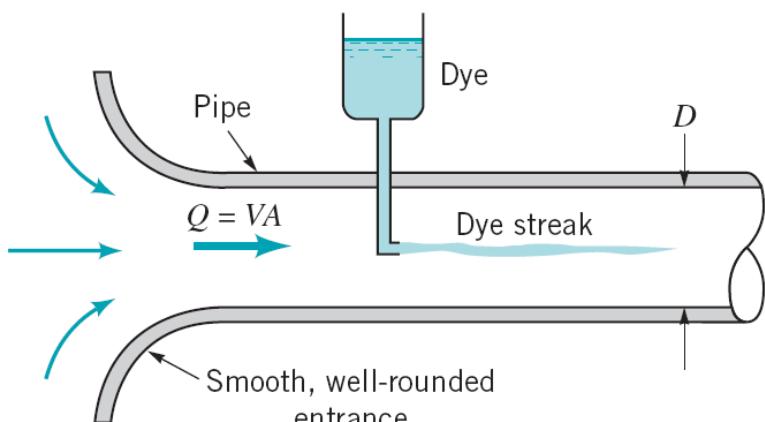
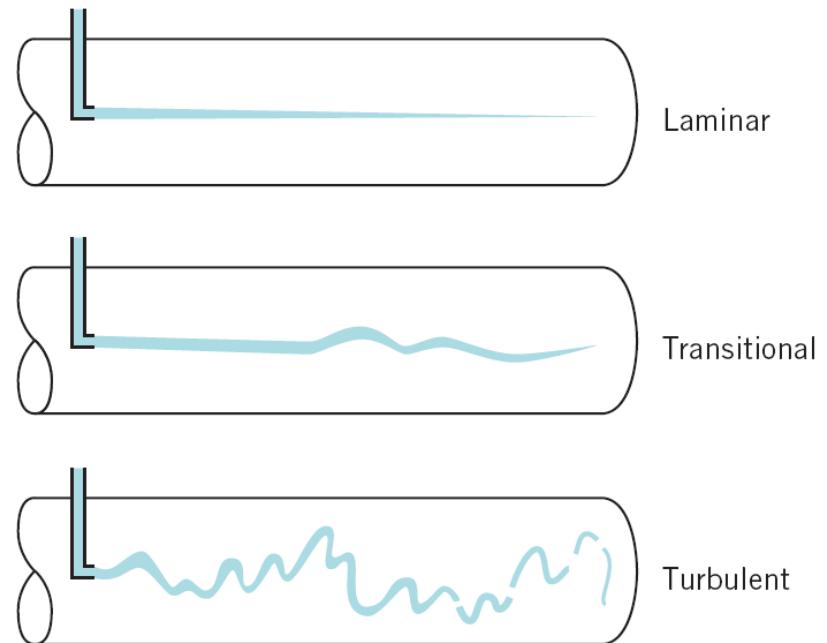


Channel flow (gravity-driven)



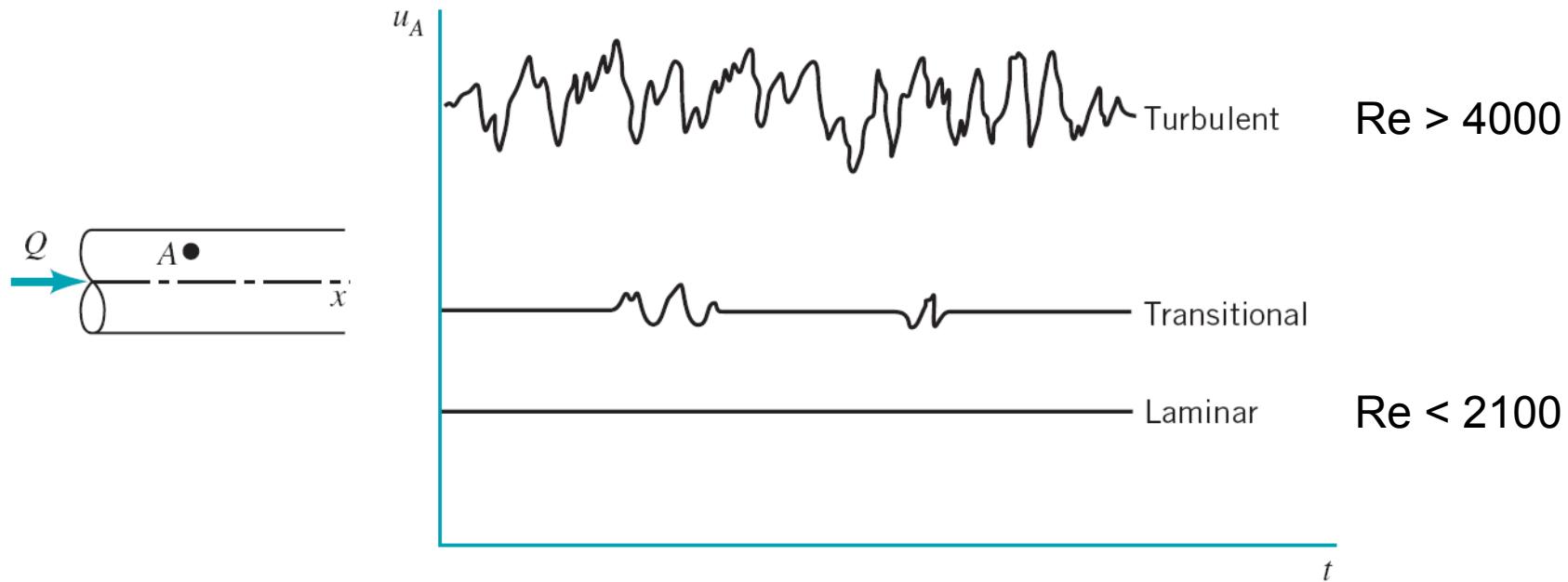
Laminar, transitional and turbulent flow

Reynolds experiment:



Laminar, transitional and turbulent flow (video)

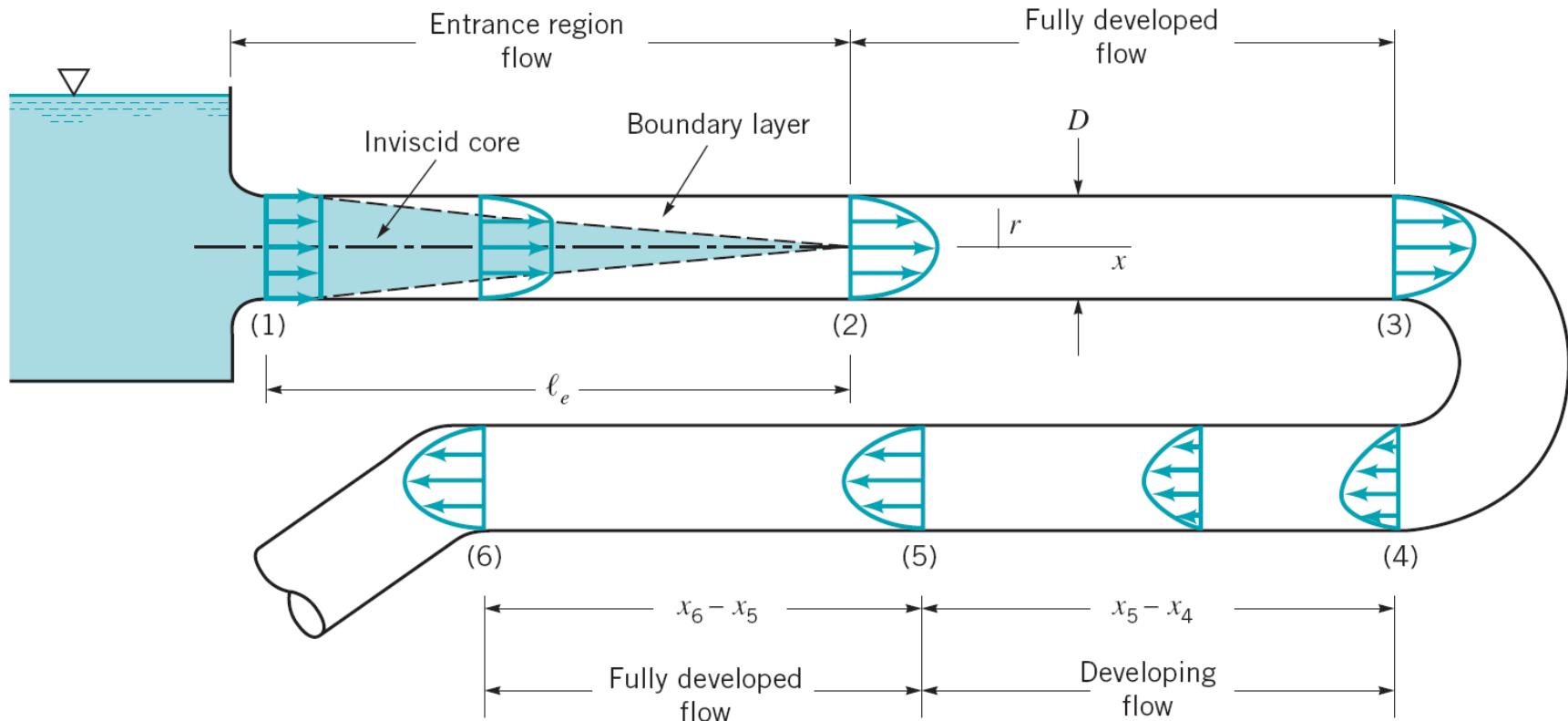
Limits of laminar, transitional and turbulent flow



Remarks:

- Analytical solutions only for laminar flow
- Only few engineering applications involve laminar flow. Most involve turbulent flow. For turbulent flow we use experimental findings and empirical relations
- Before using Poiseuille's law (valid only for laminar flow), check the Reynolds number to verify that the flow is indeed laminar ($Re < 2100$)

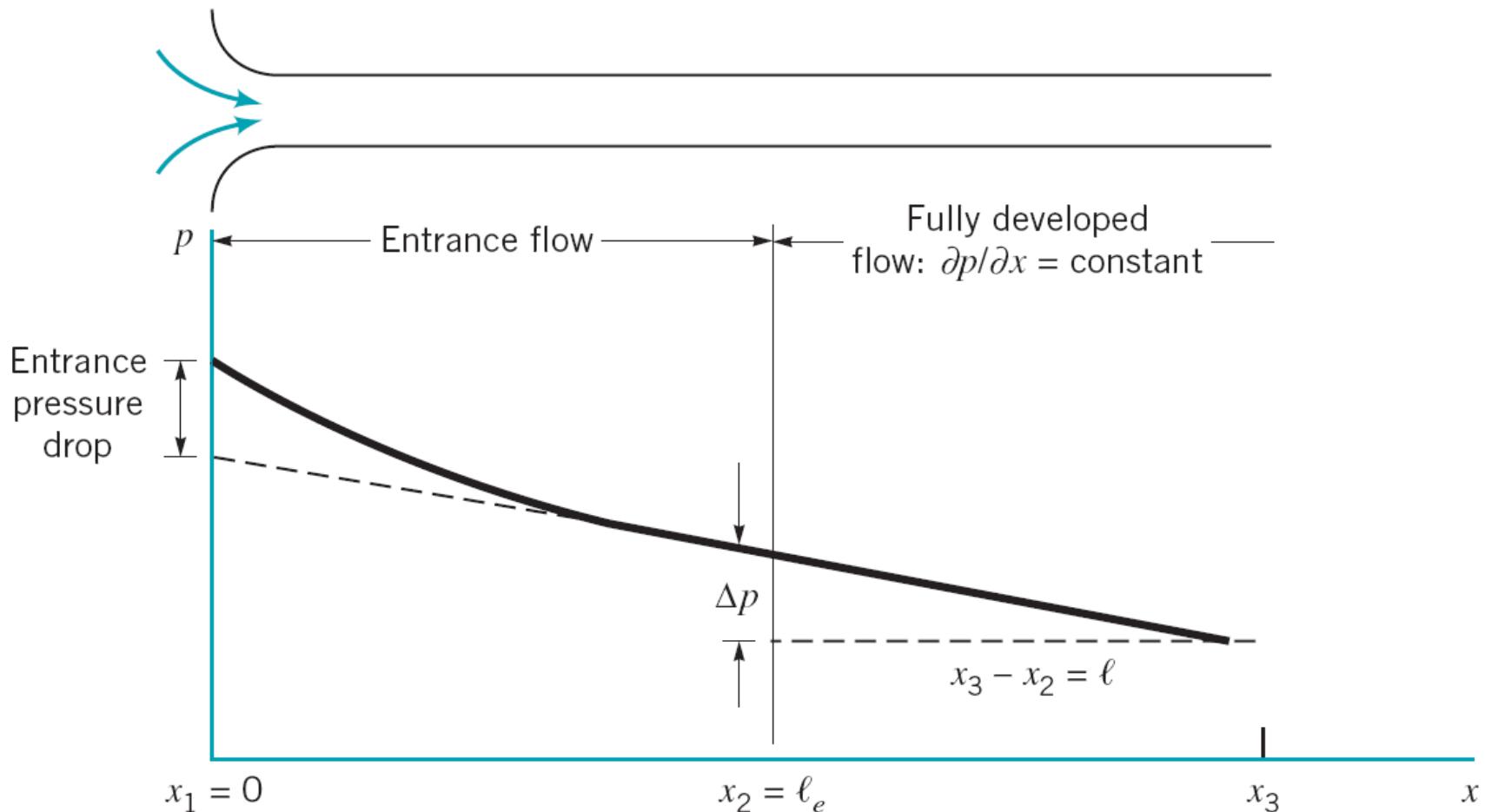
Entrance region, developing flow, and fully developed flow



$$\frac{\ell_e}{D} = 0.06 \text{Re} \quad \text{For laminar flow}$$

$$\frac{\ell_e}{D} = 4.4 \text{Re}^{1/6} \quad \text{For turbulent flow}$$

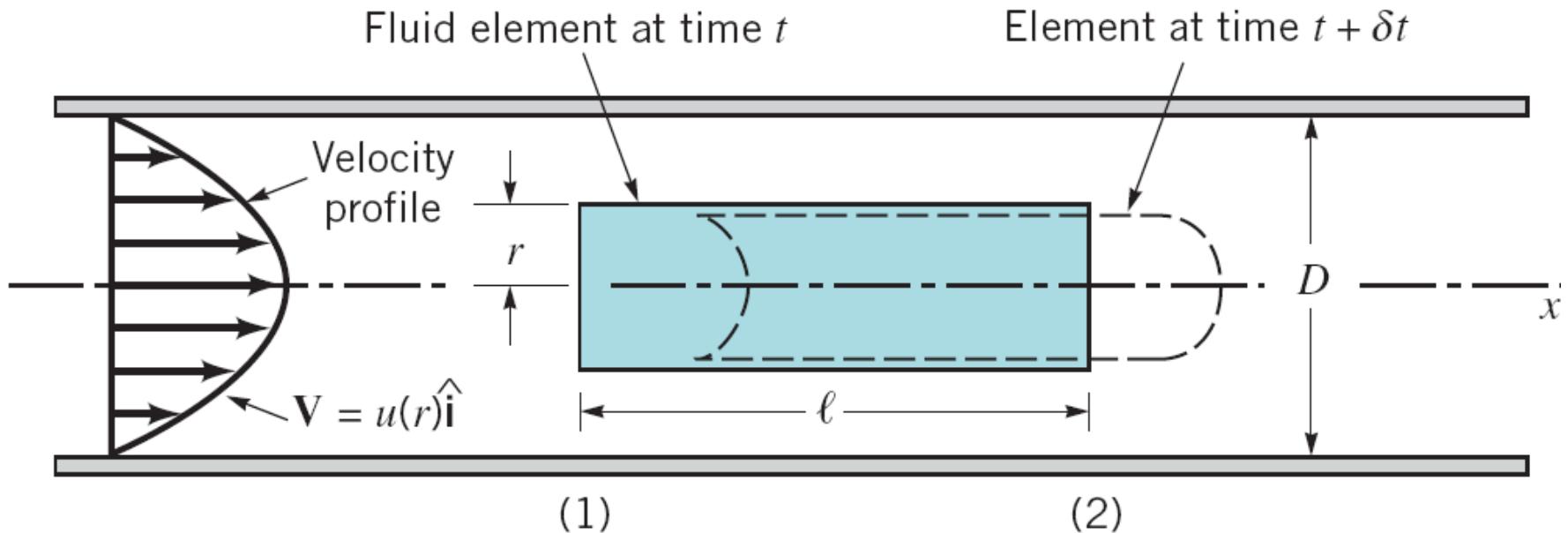
Pressure distribution along a horizontal pipe.

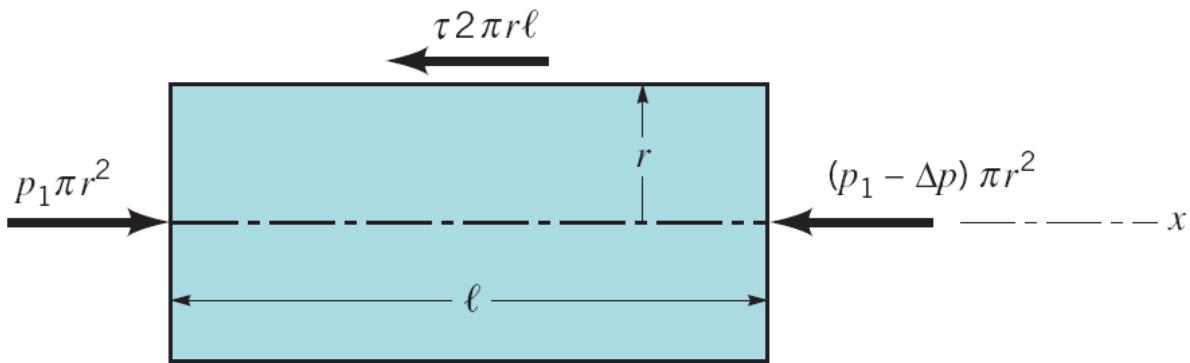


In fully developed region: $\frac{\Delta p}{l} = -\frac{\partial p}{\partial x} = \text{constant}$

no accelerations: $a_x = 0$

Fully developed laminar flow





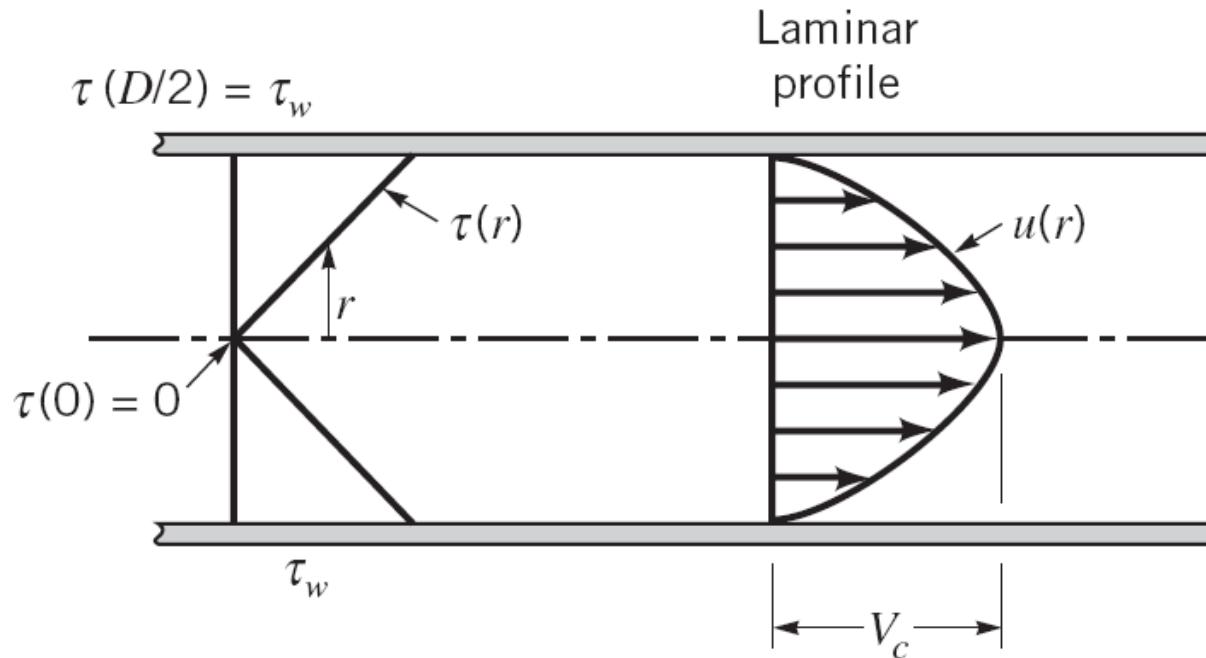
Free-body diagram of a cylindrical fluid element

$$\sum F_x = 0 \Rightarrow p \cdot \pi r^2 - (p - \Delta p) \pi r^2 - \tau 2\pi r \ell = 0$$

$$\Rightarrow \Delta p = \frac{2\tau \ell}{r}$$

$$\Rightarrow \frac{\Delta p}{\ell} = \frac{2\tau}{r} \quad (\text{independent of } r)$$

Shear stress distribution within the fluid in a pipe



Note: a) @ $r=0$ $\tau=0$ no shear @ centerline

b) @ $r=R$ $\tau=\tau_w = \frac{\Delta P}{\ell} \frac{R}{2}$ maximum shear

Relation of pressure drop to velocity and flow Hagen-Poiseuille law

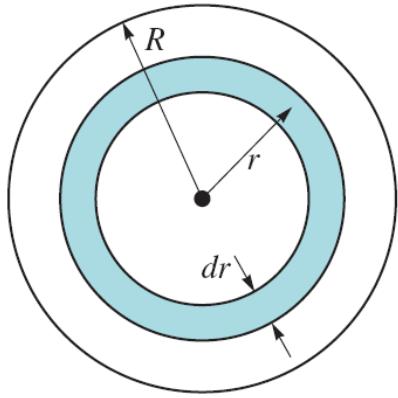
$$\begin{aligned} \tau &= -\mu \frac{du}{dr} \\ \tau &= \frac{\Delta P}{l} \frac{r}{2} \end{aligned} \quad \left. \begin{aligned} \Rightarrow \frac{du}{dr} &= -\frac{\Delta P}{2\mu l} r \end{aligned} \right.$$

$$\Rightarrow \int du = -\frac{\Delta P}{2\mu l} \int r dr \Rightarrow u = -\frac{\Delta P}{4\mu l} r^2 + C$$

$$\text{B.C.: At } r=R \quad u=0 \Rightarrow C = \frac{\Delta P}{4\mu l} R^2$$

$$\therefore u = \underline{\underline{\frac{\Delta P}{4\mu l} [R^2 - r^2]}} \quad \text{or} \quad u = \underline{\underline{\frac{\Delta P R^2}{4\mu l} \left[1 - \frac{r^2}{R^2}\right]}}$$

$$\text{At } r=0 \quad u = V_c = \frac{\Delta P R^2}{4\mu l} \quad \text{Hence} \quad u(r) = V_c \cdot \left[1 - \frac{r^2}{R^2}\right]$$



$$dA = 2\pi r dr$$

To get flow, Q , integrate over the cross section

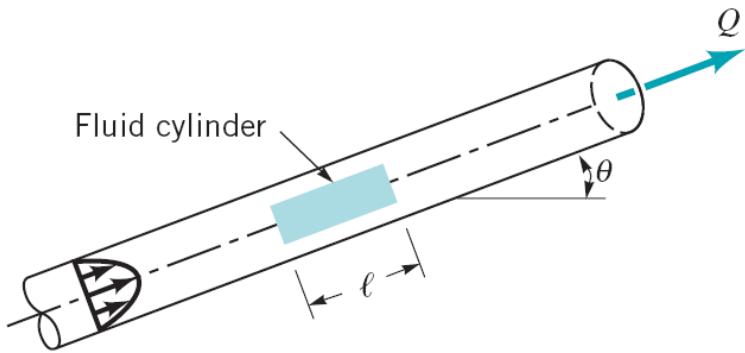
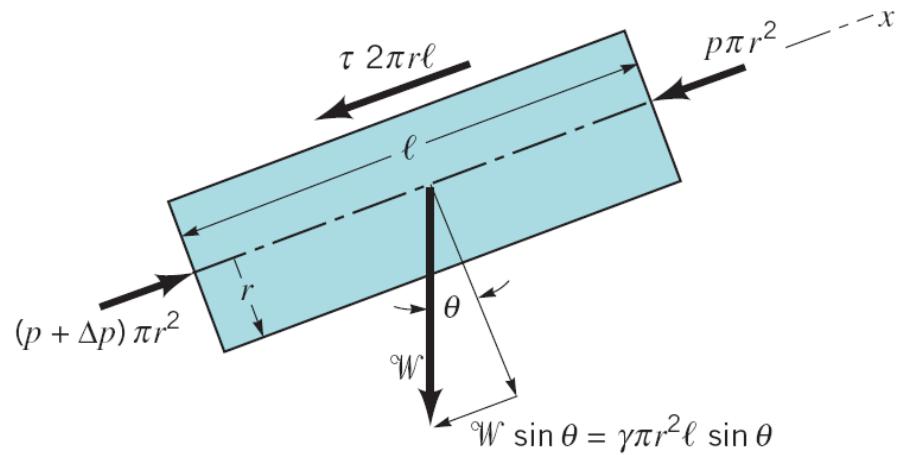
$$Q = \int_0^R u(r) 2\pi r dr = 2\pi V_c \int_0^R r \left[1 - \frac{r^2}{R^2} \right] dr$$

$$\Rightarrow Q = 2\pi V_c \int_0^R \left[r - \frac{r^3}{R^2} \right] dr = 2\pi V_c \left[\frac{r^2}{2} - \frac{r^4}{4R^2} \right]_0^R$$

$$\Rightarrow \underline{\underline{Q = \frac{\pi R^2 V_c}{2}}} \quad \text{or} \quad \underline{\underline{Q = \frac{\pi R^4}{8\mu l} \Delta p}}$$

$$\text{Average velocity: } \overline{V} = \frac{Q}{\pi R^2} = \frac{V_c}{2}$$

Laminar flow in non-horizontal pipes

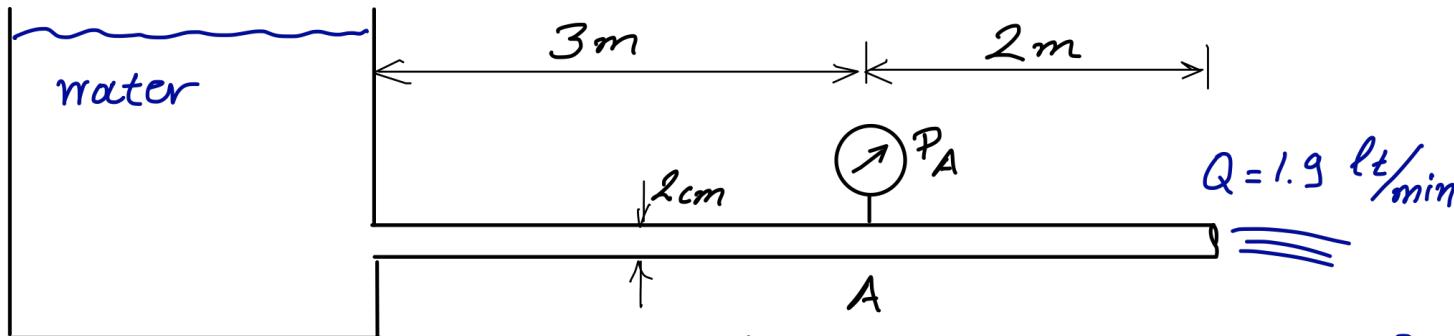


$$\begin{aligned}\sum F_x = 0 &\Rightarrow \Delta p \cdot \pi r^2 - \gamma \pi r^2 \ell \sin \theta - 2 \pi r \ell \cdot \tau = 0 \\ &\Rightarrow (\Delta p - \gamma \ell \sin \theta) \pi r^2 - 2 \pi r \ell \tau = 0\end{aligned}$$

∴ In Poiseuille's law, replace Δp with $\Delta p - \gamma \ell \sin \theta$

i.e.,
$$Q = \frac{\pi R^4 (\Delta p - \gamma \ell \sin \theta)}{8 \mu \ell}$$

Example



What is the pressure at point A?

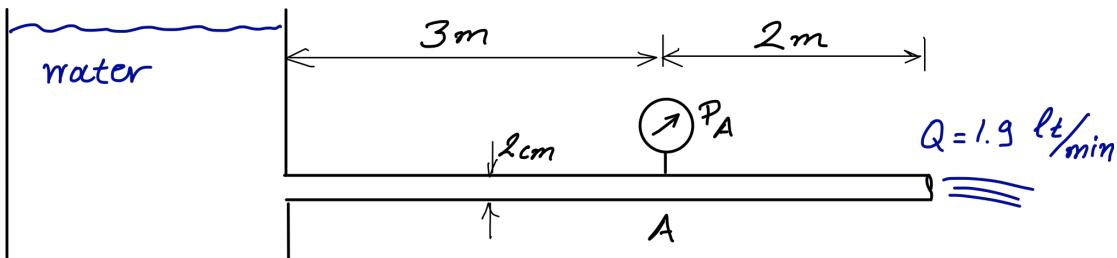
$$Q = 1.9 \text{ l/s/min} = \frac{1.9 \times 10^{-3} \text{ m}^3}{60 \text{ s}} = 3.17 \times 10^{-5} \text{ m}^3/\text{s}$$

$$V = \frac{Q}{A} = \frac{3.17 \times 10^{-5} \text{ m}^3/\text{s}}{\pi \cdot 0.01^2 \text{ m}^2} = 0.101 \text{ m/s}$$

$$Re = \frac{\rho V D}{\mu} = \frac{999 \times 0.101 \times 0.02}{1.12 \times 10^{-3}} = 1800$$

$Re = 1800 < 2100$ flow is laminar

Example



What is the pressure at point A?

$$Q = \frac{\pi R^4}{8\mu l} \Delta P \Rightarrow \Delta P = \frac{8\mu l}{\pi R^4} Q \quad (\Delta P = P_A - P_{exit})$$

$$\Rightarrow \Delta P = \frac{8 \times 1.12 \times 10^{-3} \times 2}{\pi \cdot 0.01^4} \times 3.17 \times 10^{-5} \text{ N/m}^2 = \underline{\underline{18.1 \text{ Pa}}}$$

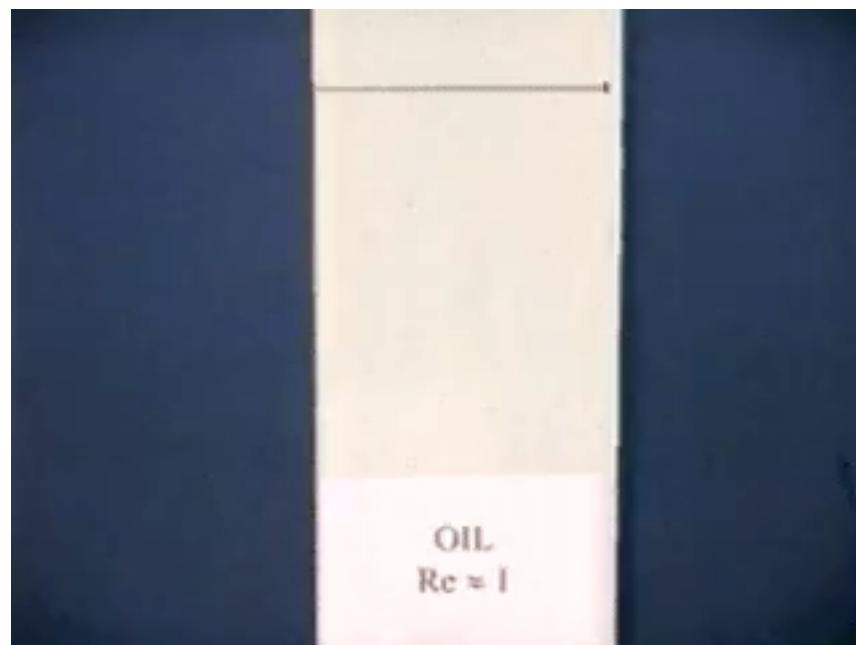
$$\Rightarrow \underline{\underline{P_A = 18.1 \text{ Pa}}}$$

Need to check if flow is fully developed at A:

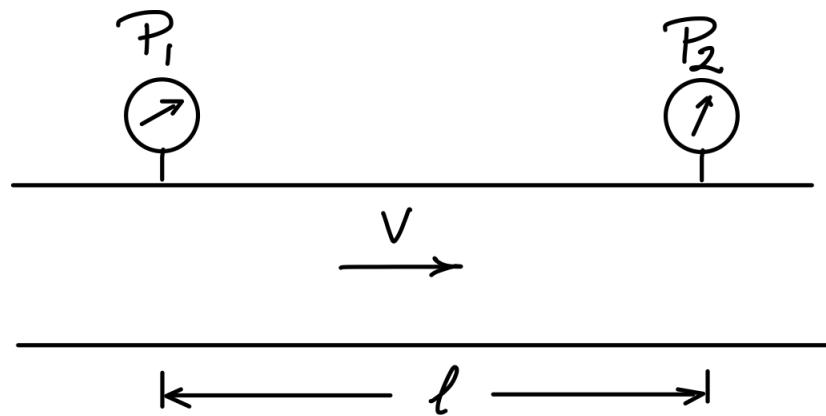
$$l_e = 0.06 \times R_e \times D = 0.06 \times 1800 \times 0.02 \text{ m} = 2.16 \text{ m}$$

$l_e = 2.16 \text{ m} < 3 \text{ m}$ so flow is fully developed at A.
OK to use Poiseuille.

Laminar & turbulent flow



Energy equation applied to pipe flow



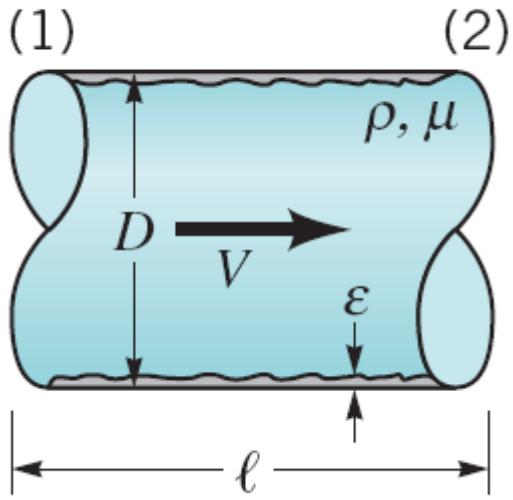
Energy: $\frac{P_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_L$

Velocity profile is the same: $\alpha_1 \frac{V_1^2}{2g} = \alpha_2 \frac{V_2^2}{2g}$

Hence,
$$h_L = \frac{P_1 - P_2}{\gamma} \quad (1)$$

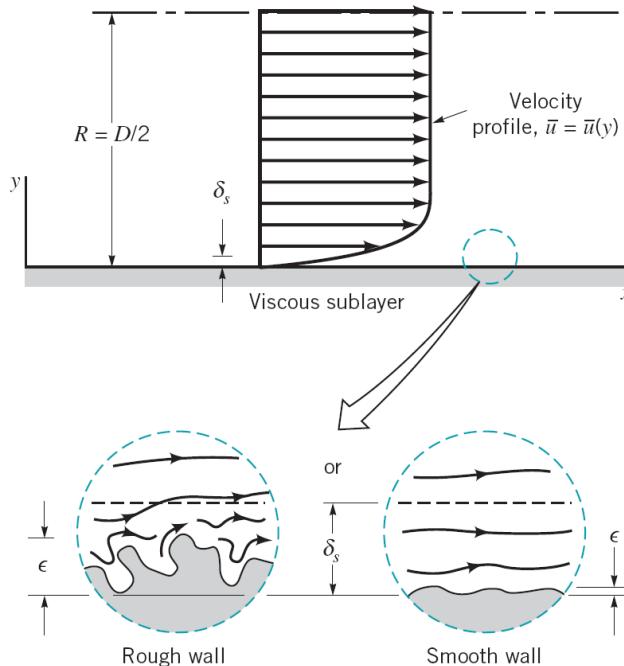
Dimensional analysis

$$\Delta p = p_1 - p_2$$



ϵ = pipe wall roughness

Typically, $0 \leq \epsilon \leq 0.05$



Flow in the viscous sublayer near rough and smooth walls.

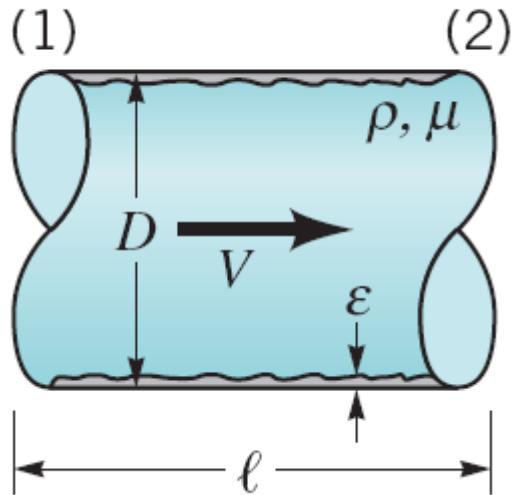
$$\Delta p = f(D, \ell, \epsilon, \mu, \rho, V)$$

Π -theorem:

$$\frac{\Delta p}{\frac{1}{2} \rho V^2} = \phi \left(\frac{\ell}{D}, \frac{\epsilon}{D}, \frac{\rho V D}{\mu} \right)$$

Dimensional analysis

$$\Delta p = p_1 - p_2$$



$$\frac{\Delta p}{\frac{1}{2} \rho V^2} = \phi \left(\frac{l}{D}, \frac{\varepsilon}{D}, \frac{\rho V D}{\mu} \right)$$

Assume $\Delta p \sim l$

$$\frac{\Delta p}{\frac{1}{2} \rho V^2} = \frac{l}{D} \cdot \underbrace{\phi \left(\frac{\varepsilon}{D}, Re \right)}_{\text{friction factor, } f}$$

$$\frac{h_L}{\frac{1}{2} \rho V^2} = \frac{P_1 - P_2}{\rho g} \quad (1) \quad \therefore \quad \Delta p = f \cdot \frac{l}{D} \cdot \frac{\rho V^2}{2} \quad (2)$$

$$(1) \sim (2) \Rightarrow$$

$$\frac{h_L}{\frac{1}{2} \rho V^2} = f \cdot \frac{l}{D} \cdot \frac{V^2}{2g}$$

Friction factor for laminar flow

$$\Delta P = \frac{8\mu l}{\pi R^4} Q = \frac{8\mu l}{R^2} \frac{Q}{\pi R^2} = \frac{8\mu l}{R^2} V = \frac{32\mu l}{D^2} V$$

$$\Rightarrow \Delta P = 32 \frac{l}{D} \cdot \frac{\mu}{\rho V D} \cdot \rho V^2$$

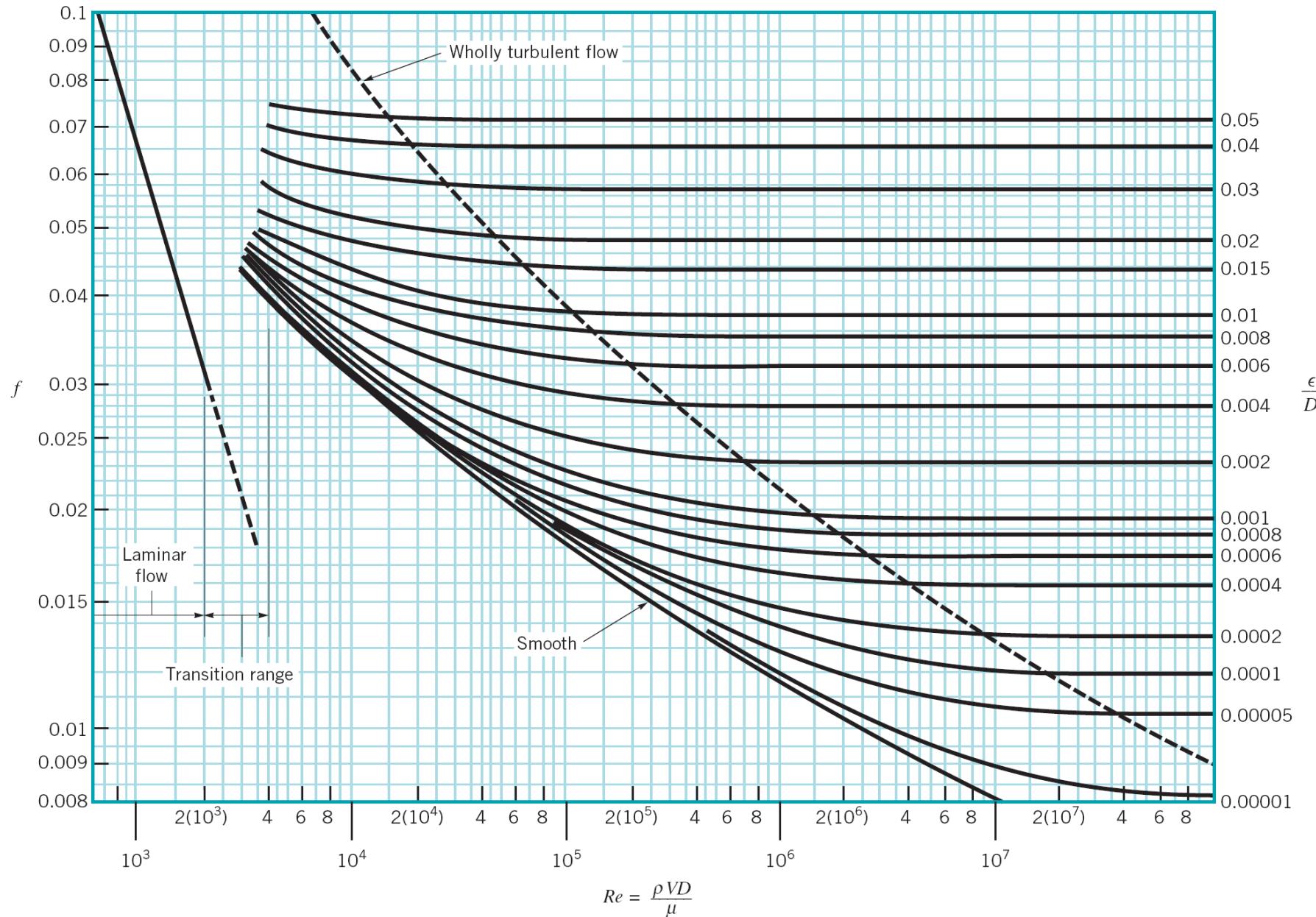
$$\Rightarrow \Delta P = \frac{64}{Re} \frac{l}{D} \frac{\rho V^2}{2}$$

f

$$\Rightarrow f = \frac{64}{Re} \quad (\text{Independent of wall roughness})$$

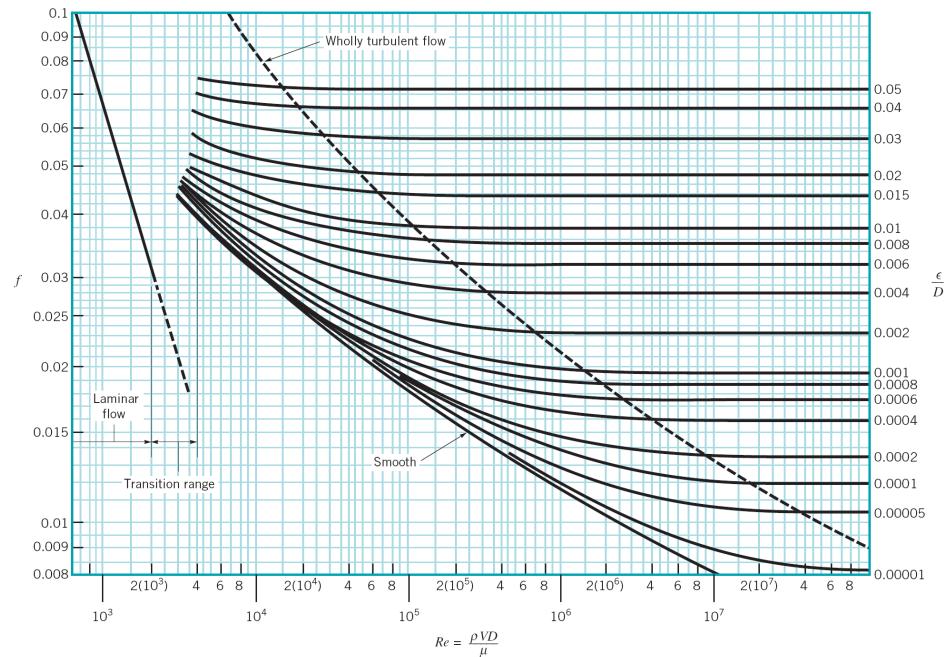
Friction factor as a function of Reynolds number and relative roughness

Moody chart



Colebrook's formula

Moody's chart



Colebrook's formula

Empirical formula, equivalent to Moody's chart:

$$\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{\epsilon / D}{3.7} + \frac{2.51}{Re \sqrt{f}} \right)$$

To solve, use iterative method until convergence. For example, if Re and f are known, assume a friction factor value, plug it on RHS of the equation to obtain a new f value on the LHS. Repeat the procedure with the new f value until convergence.

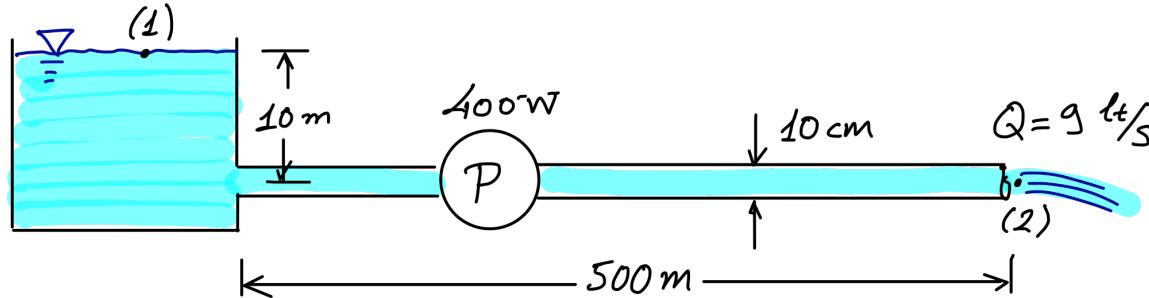
Equivalent Roughness for New Pipes

■ TABLE 8.1

Equivalent Roughness for New Pipes [From Moody (Ref. 7) and Colebrook (Ref. 8)]

Pipe	Equivalent Roughness, ϵ	
	Feet	Millimeters
Riveted steel	0.003–0.03	0.9–9.0
Concrete	0.001–0.01	0.3–3.0
Wood stave	0.0006–0.003	0.18–0.9
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Commercial steel or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Plastic, glass	0.0 (smooth)	0.0 (smooth)

Example



What is the pipe roughness?

Energy equation between (1) and (2):

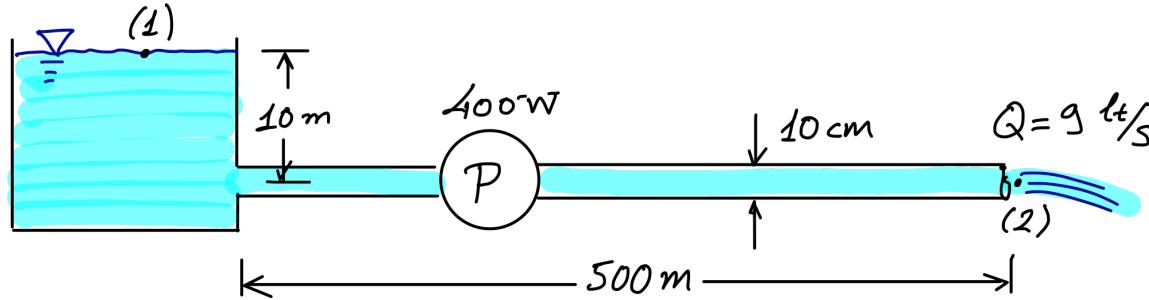
$$\cancel{\frac{P_1}{\rho g}} + \frac{V_1^2}{2g} + z_1 + h_p = \cancel{\frac{P_2}{\rho g}} + \frac{V_2^2}{2g} + z_2 + h_L$$

$$\Rightarrow h_L = h_p + (z_1 - z_2) - \frac{V_2^2}{2g}$$

$$h_p = \frac{\dot{W}}{\rho Q} = \frac{400 \text{ N.m/s}}{9800 \text{ N/m}^3 \cdot 0.009 \text{ m}^3/\text{s}} = 4.54 \text{ m}$$

$$V_2 = \frac{Q}{A} = \frac{0.009 \text{ m}^3/\text{s}}{\pi \cdot 0.05^2 \text{ m}^2} = 1.15 \text{ m/s}$$

Example

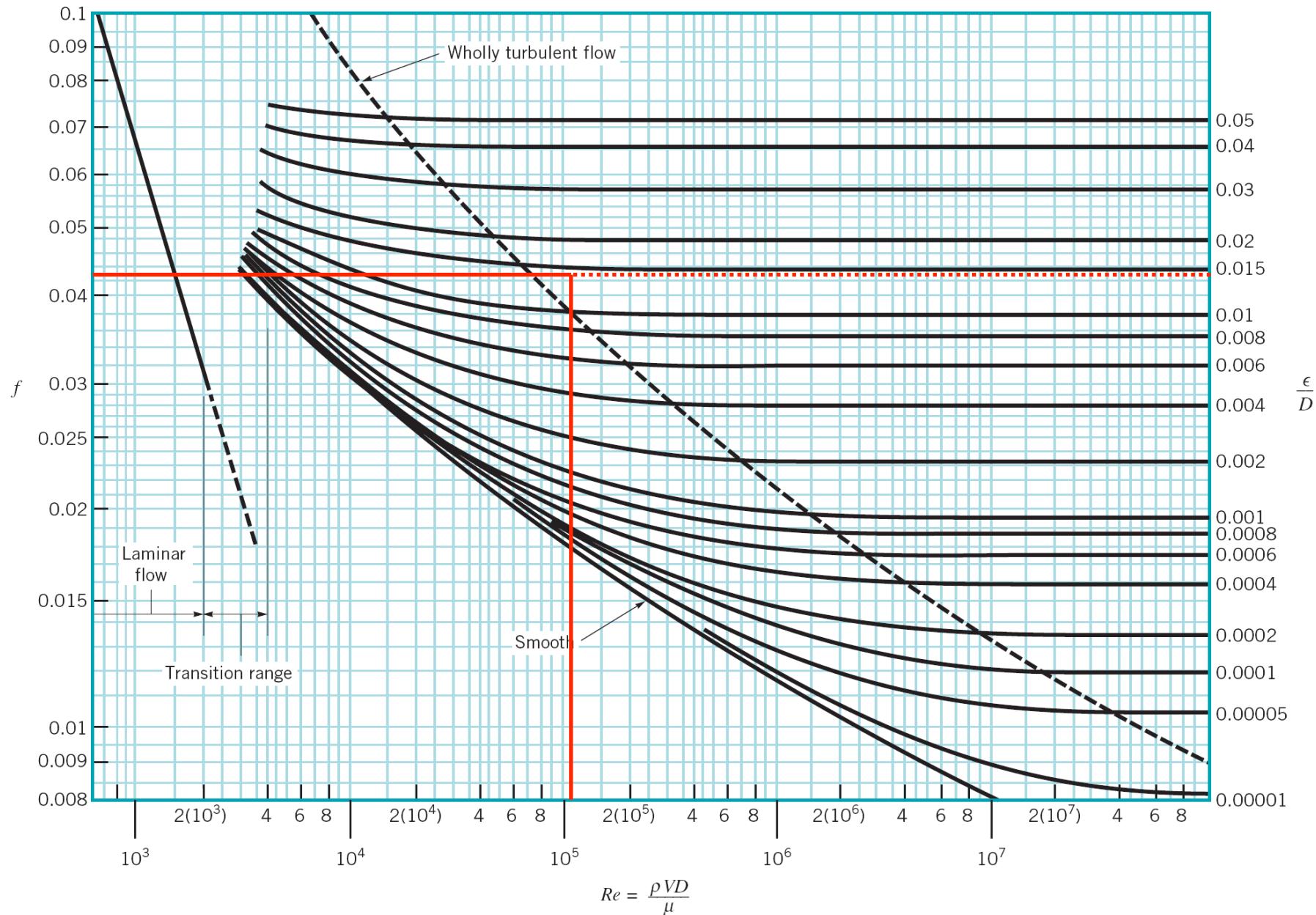


$$\therefore h_L = 4.54 \text{ m} + 10 \text{ m} - \frac{1.15^2 \text{ m}^2/\text{s}^2}{2 \times 9.81 \text{ m/s}^2} = 14.5 \text{ m}$$

$$h_L = f \cdot \frac{l}{D} \cdot \frac{V^2}{2g} \Rightarrow f = \frac{h_L}{\frac{l}{D} \cdot \frac{V^2}{2g}} = \frac{14.5}{\frac{500}{0.1} \cdot \frac{1.15^2}{2 \times 9.81}}$$

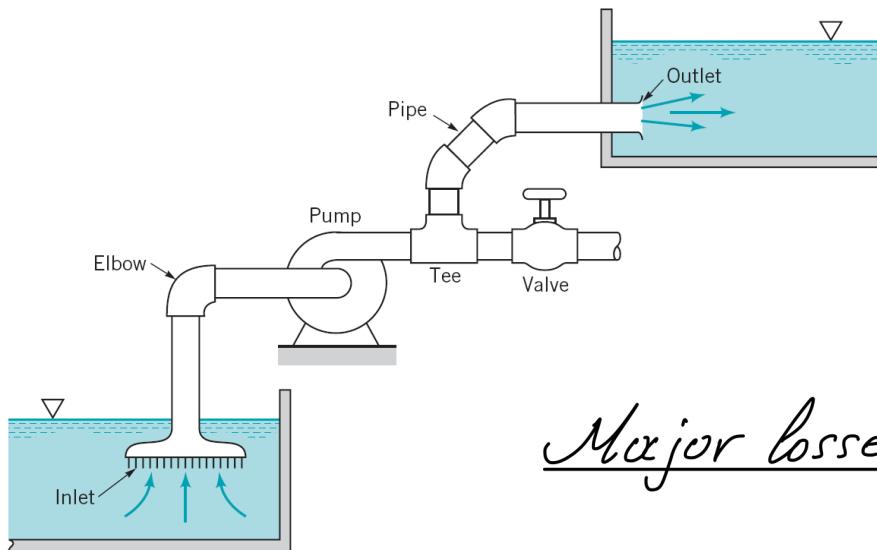
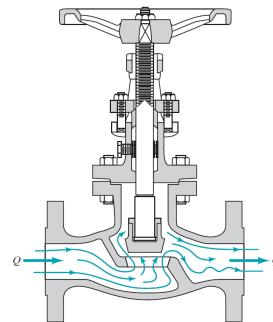
$$\Rightarrow \underline{\underline{f = 0.043}}$$

$$Re = \frac{\rho V D}{\mu} = \frac{999 \cdot 1.15 \cdot 0.1}{1.12 \times 10^{-3}} = 1.03 \times 10^{-5}$$



$$\frac{\epsilon}{D} = 0.0145 \Rightarrow \epsilon = 0.0145 \times 10 \text{ cm} = 0.145 \text{ cm} = 1.45 \text{ mm}$$

Minor losses



Major losses friction losses in straight portions

$$h_L = f \frac{l}{D} \frac{V^2}{2g}$$

Minor losses losses in valves, elbows, tees, etc.
The head loss associated with minor losses:

$$h_L = k_L \frac{V^2}{2g}$$

where k_L is function of geometry

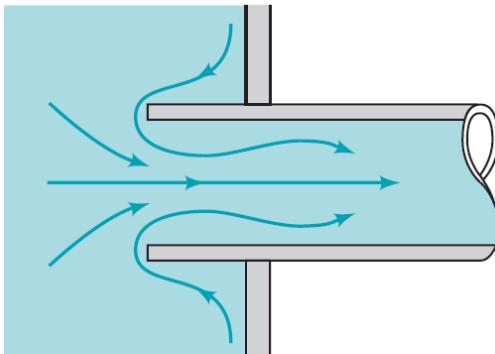
$$\Delta p = \gamma \cdot h_L = k_L \frac{\rho V^2}{2}$$

Note:

Minor losses can be more important than major losses.

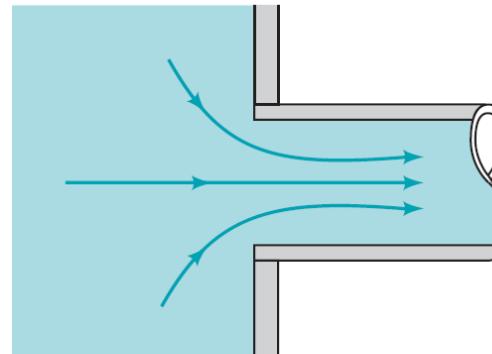
Entrance flow conditions and loss coefficient

Reentrant
 $K_L = 0.8$



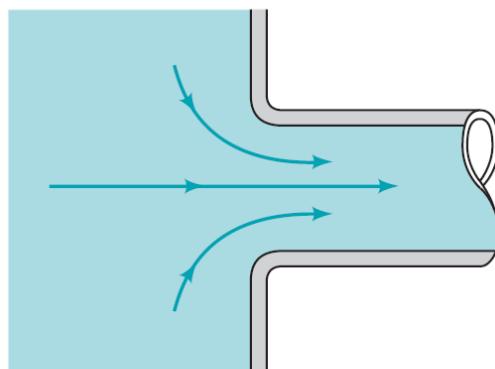
(a)

sharp-edged
 $K_L = 0.5$



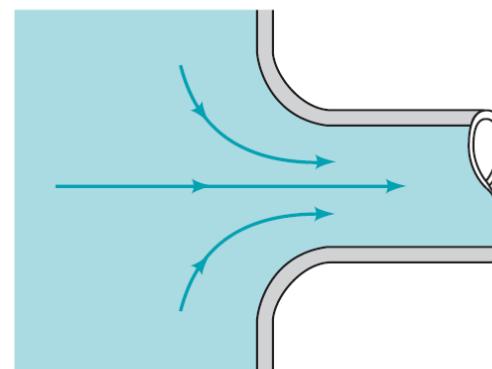
(b)

slightly
rounded
 $K_L = 0.2$



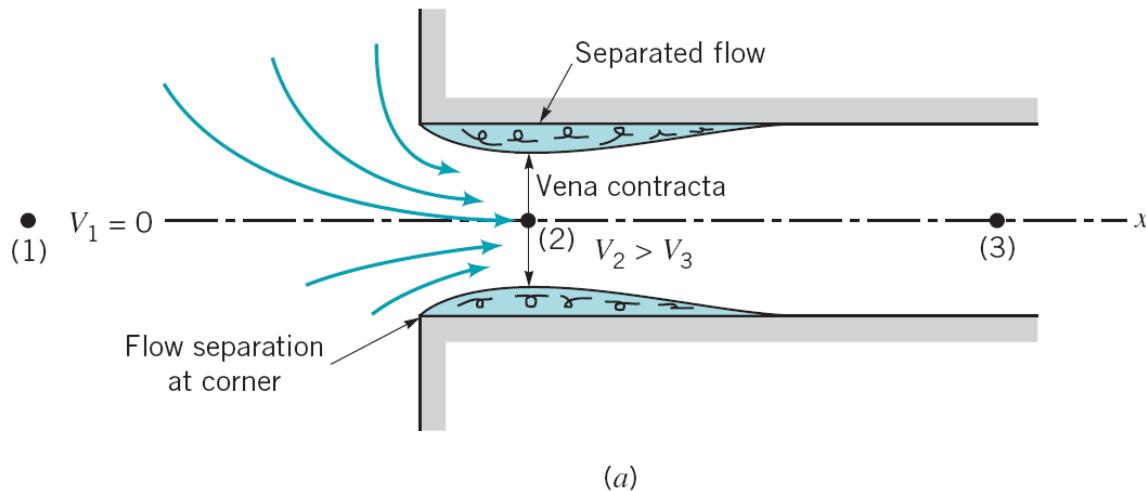
(c)

well-rounded
 $K_L = 0.04$

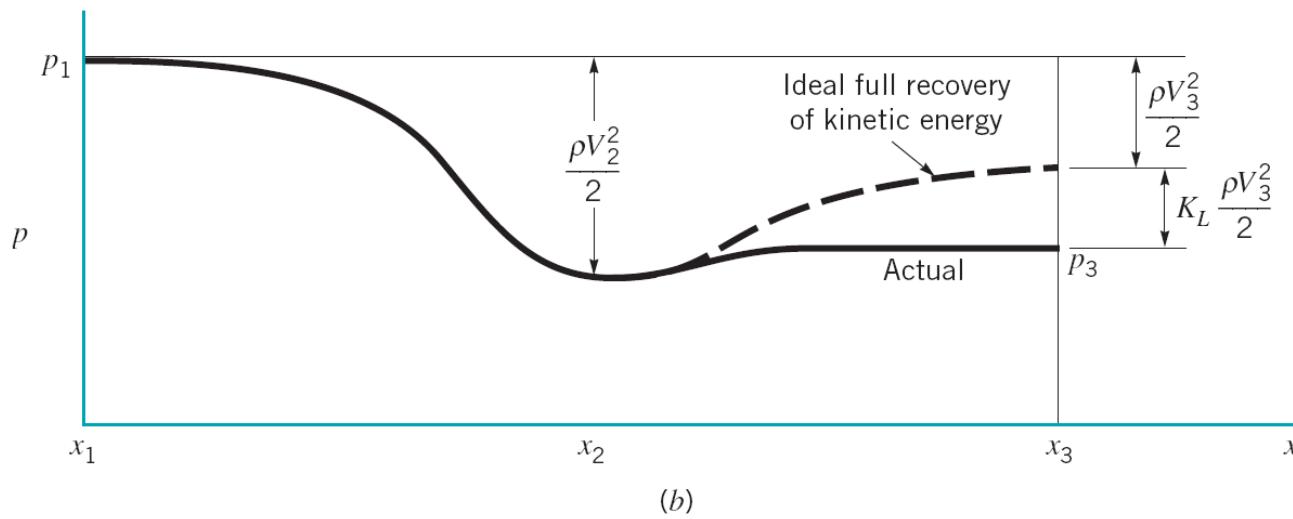


(d)

Flow pattern and pressure distribution for a sharp-edged entrance.

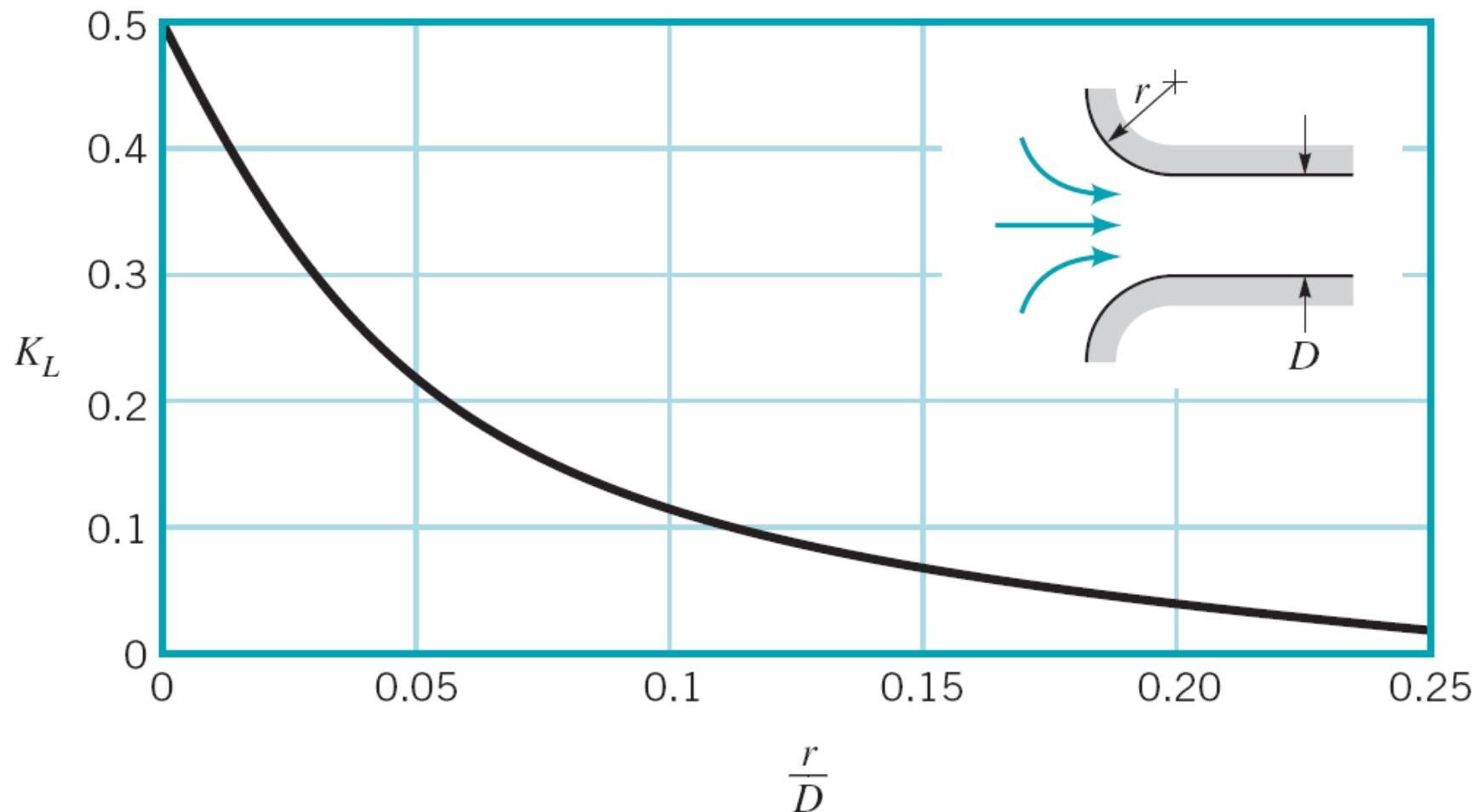


(a)

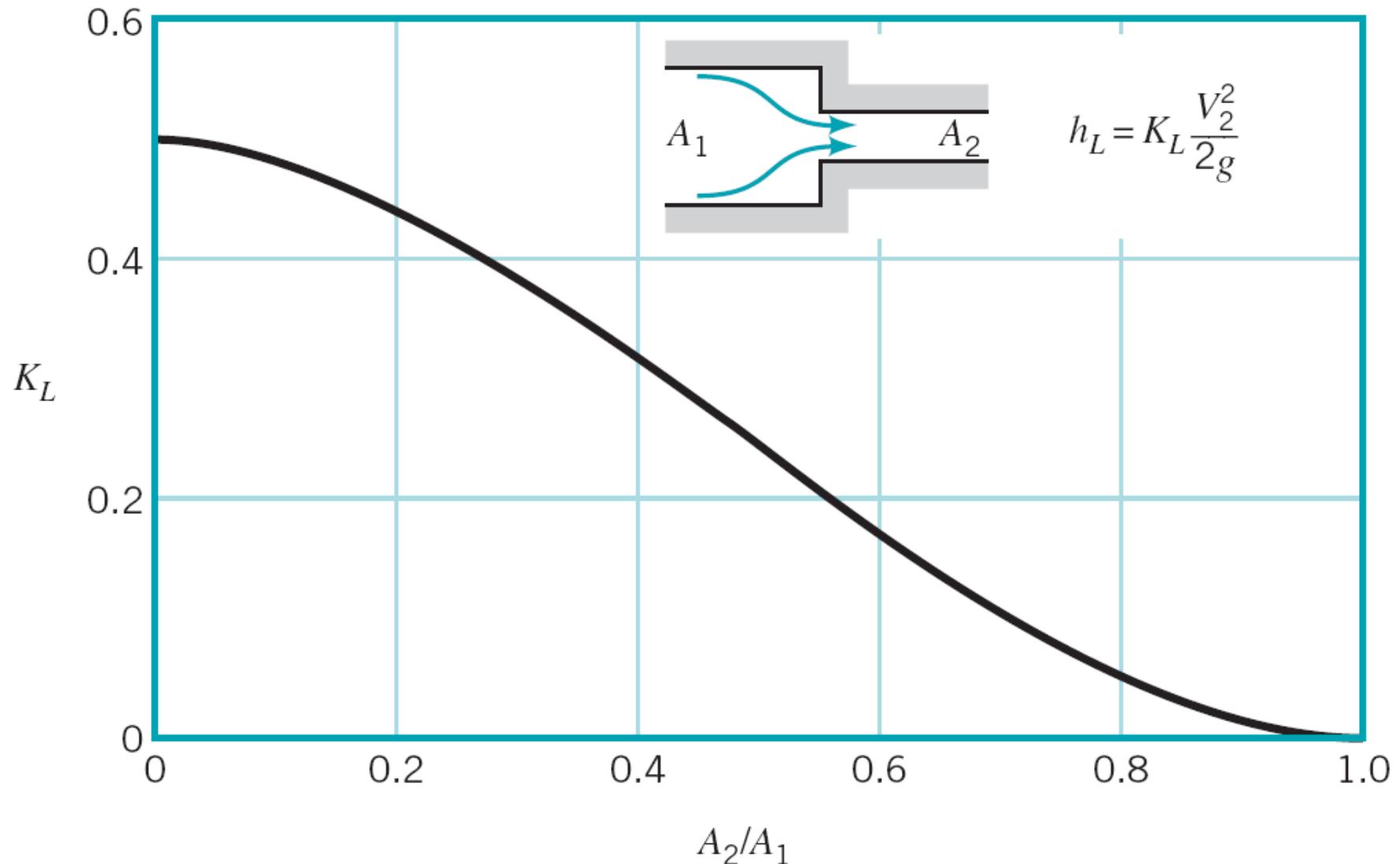


(b)

Entrance loss coefficient as a function of rounding of the inlet edge

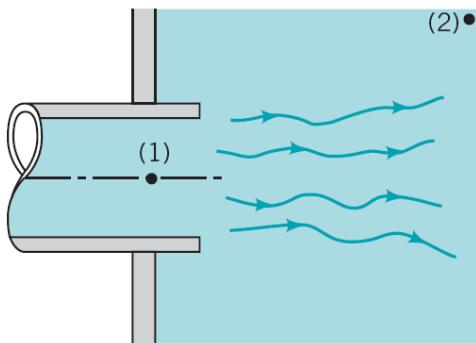


Loss coefficient for a sudden contraction



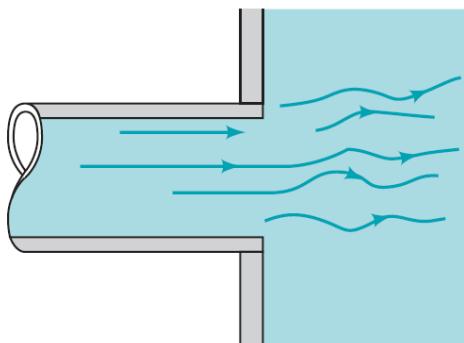
Exit flow conditions and loss coefficient

Reentrant
 $K_L = 1.0$



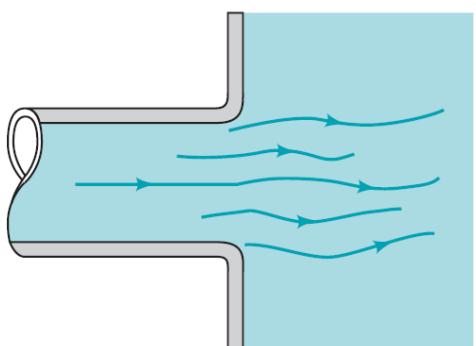
(a)

sharp-edged
 $K_L = 1.0$



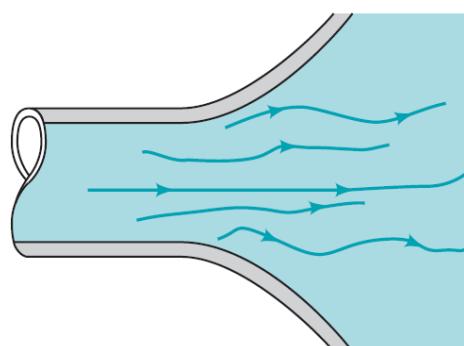
(b)

slightly rounded
 $K_L = 1.0$



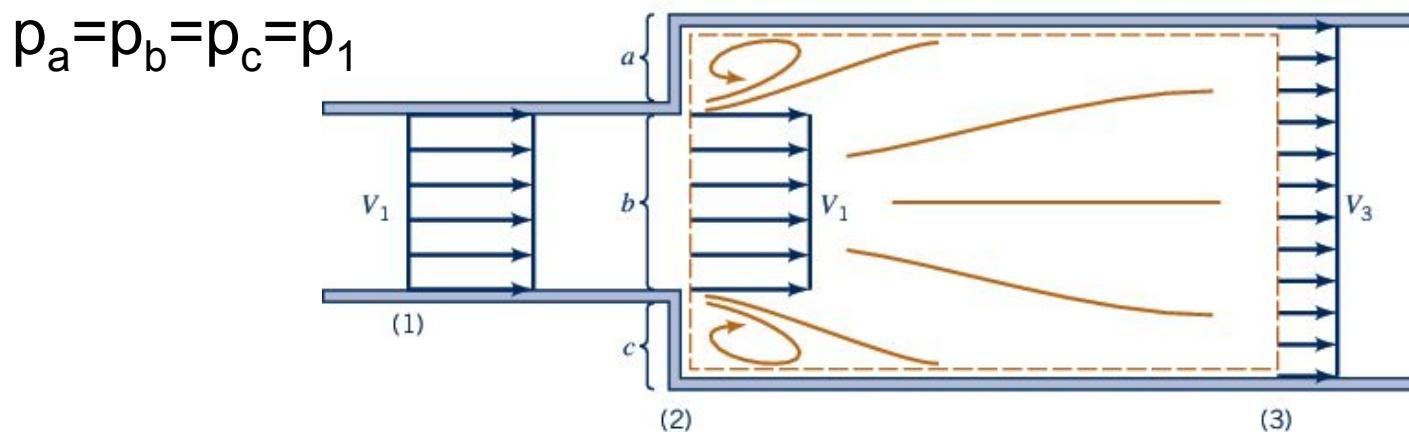
(c)

well-rounded
 $K_L = 1.0$



(d)

Loss coefficient for a sudden expansion



Continuity (1): $A_1 V_1 = A_3 V_3$ Momentum (2): $p_1 A_3 - p_3 A_3 = \rho A_3 V_3 (V_3 - V_1)$

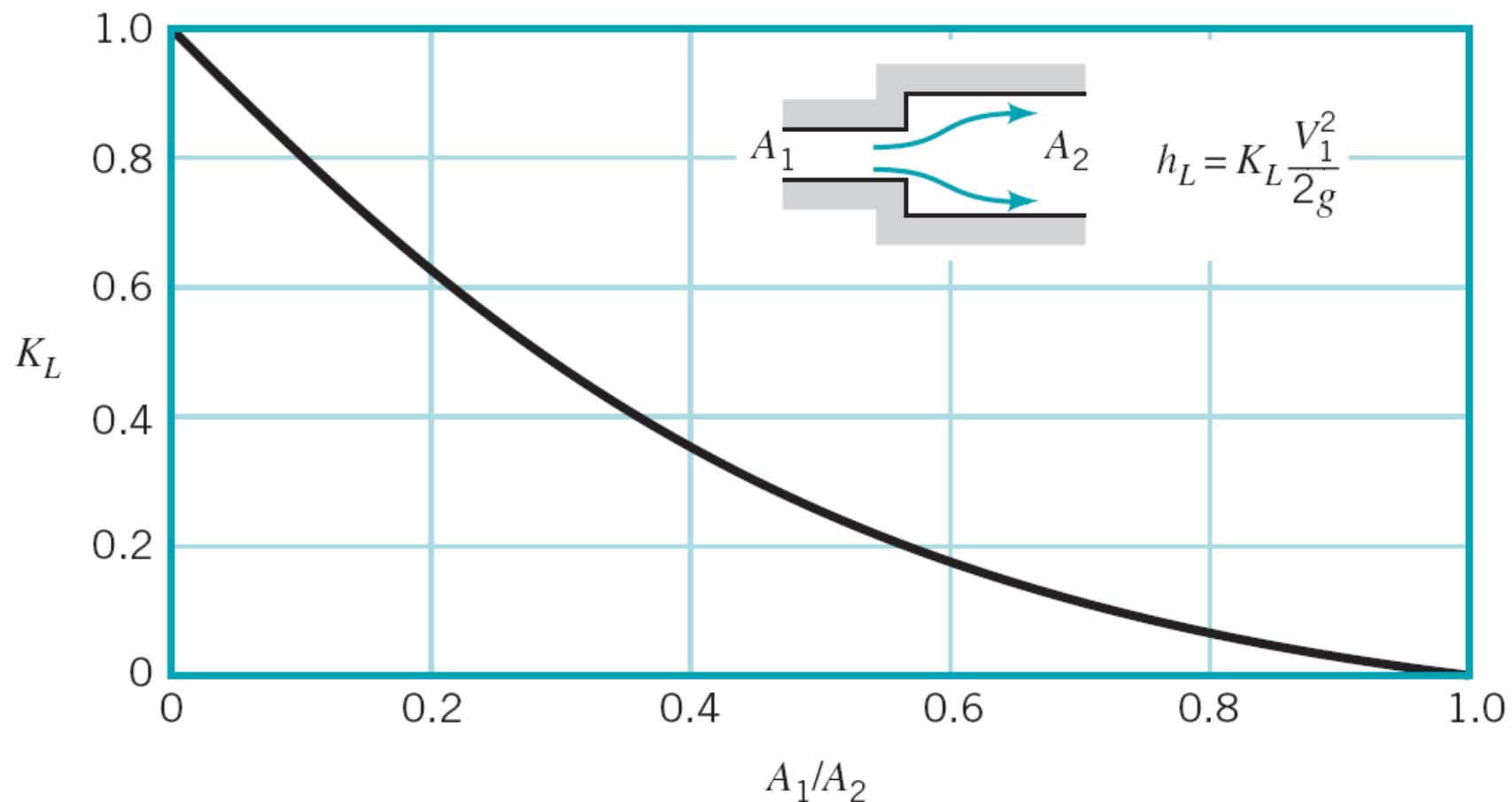
Energy (3): $\frac{p_1}{\gamma} + \frac{v_1^2}{2g} = \frac{p_3}{\gamma} + \frac{v_3^2}{2g} + h_l$ Head loss (4): $h_l = K_l \frac{v_1^2}{2g}$

$$h_l = \frac{p_1 - p_3}{\gamma} + \frac{v_1^2 - v_3^2}{2g} = \frac{\rho v_3 (v_3 - v_1)}{\gamma} + \frac{v_1^2 - v_3^2}{2g} \quad (2+3)$$

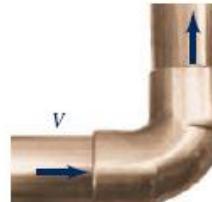
$$\rightarrow K_l = \frac{h_l * 2g}{v_1^2} = \frac{2v_3^2 - 2v_3 v_1}{v_1^2} + \frac{v_1^2 - v_3^2}{v_1^2} = 1 + \frac{v_3^2}{v_1^2} - \frac{2v_3}{v_1} \quad (4)$$

$$\rightarrow K_l = \left(1 - \frac{v_3}{v_1}\right)^2 = \left(1 - \frac{A_1}{A_3}\right)^2 \quad (5)$$

Loss coefficient for a sudden expansion

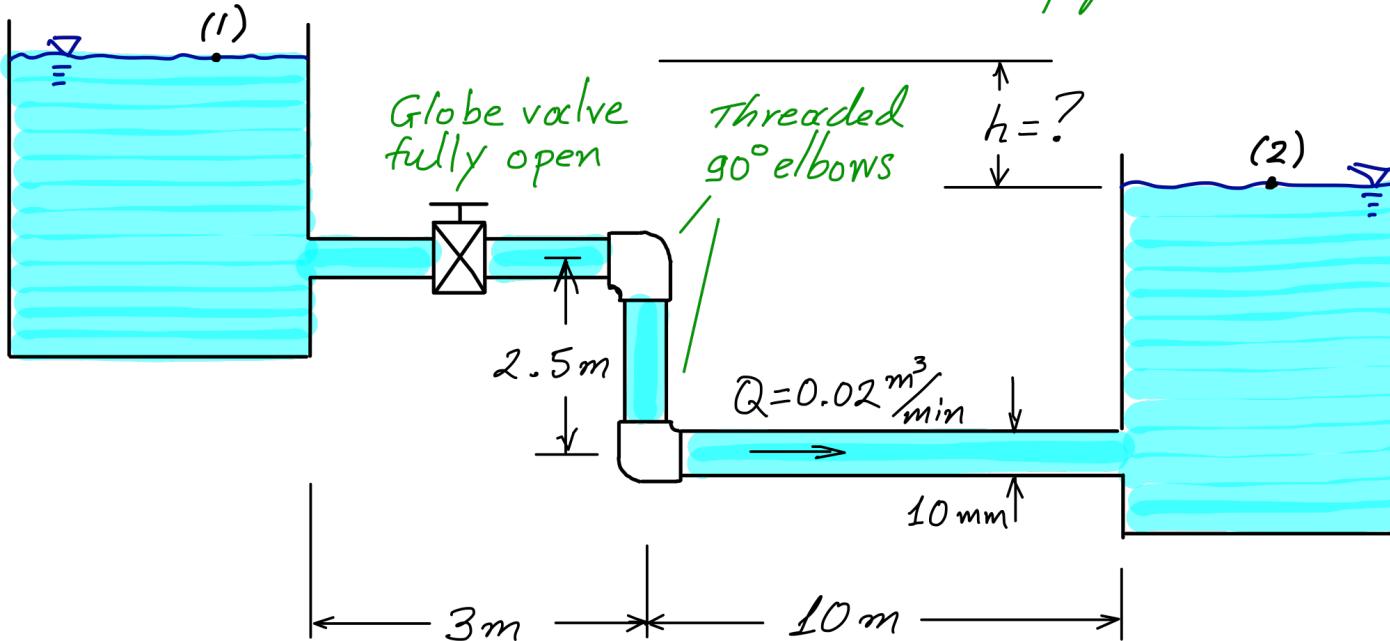


Loss coefficients for standard pipe components

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	 90° elbow
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	
b. 180° return bends		
180° return bend, flanged	0.2	45° elbow
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	 180° return bend
Line flow, threaded	0.9	
Branch flow, flanged	1.0	
Branch flow, threaded	2.0	
d. Union, threaded	0.08	Tee
e. Valves		
Globe, fully open	10	Tee
Angle, fully open	2	
Gate, fully open	0.15	
Gate, $\frac{1}{4}$ closed	0.26	
Gate, $\frac{1}{2}$ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	
Swing check, forward flow	2	
Swing check, backward flow	∞	
Ball valve, fully open	0.05	Union
Ball valve, $\frac{1}{3}$ closed	5.5	
Ball valve, $\frac{2}{3}$ closed	210	

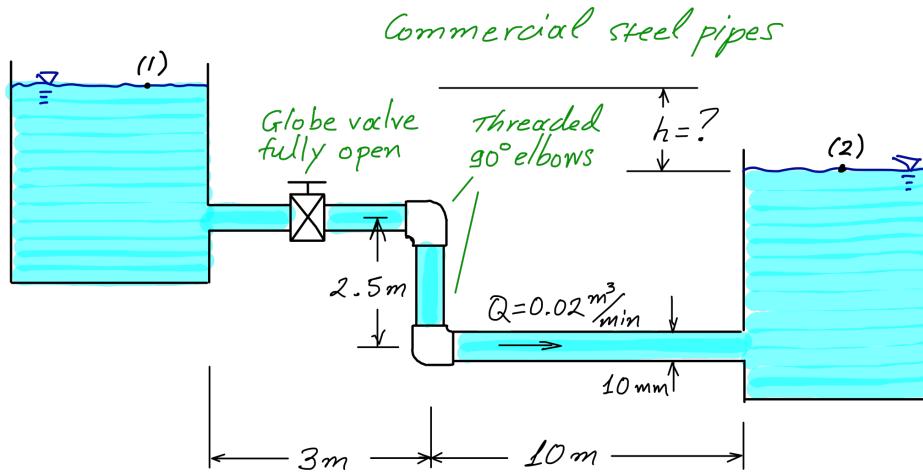
Example

Commercial steel pipes

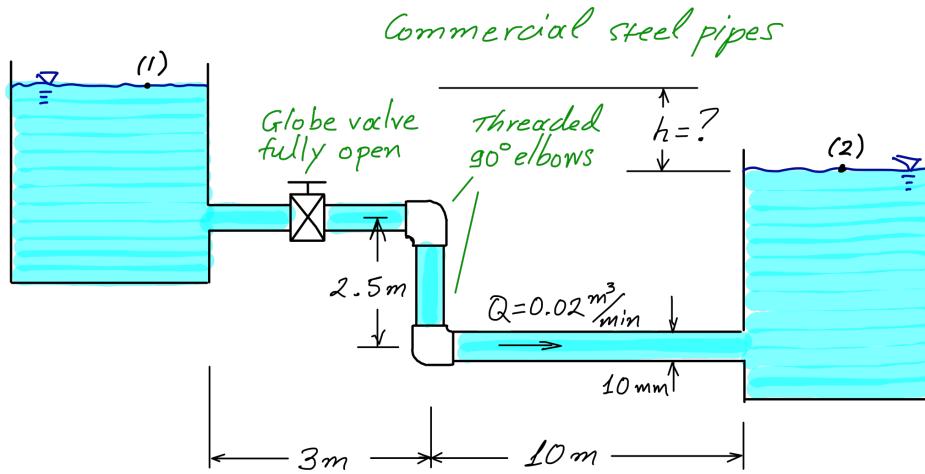


Energy eq: ~~$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_L$~~

$$\Rightarrow h = z_1 - z_2 = h_L$$



$$\begin{aligned}
 h_L &= \text{major head losses} + \text{minor head losses} \\
 &= f \cdot \frac{L_1}{D} \frac{V^2}{2g} + f \frac{L_2}{D} \frac{V^2}{2g} + f \frac{L_3}{D} \frac{V^2}{2g} \\
 &\quad + K_{\text{ent}} \frac{V^2}{2g} + K_{\text{valve}} \frac{V^2}{2g} + 2 \cdot K_{\text{elbow}} \frac{V^2}{2g} + K_{\text{exit}} \frac{V^2}{2g} \\
 \Rightarrow h_L &= \underbrace{f \frac{L_{\text{total}}}{D} \frac{V^2}{2g}}_{\text{major head losses}} + \underbrace{\left(K_{\text{ent}} + K_{\text{valve}} + 2K_{\text{elbow}} + K_{\text{exit}} \right) \frac{V^2}{2g}}_{\text{minor head losses}}
 \end{aligned}$$



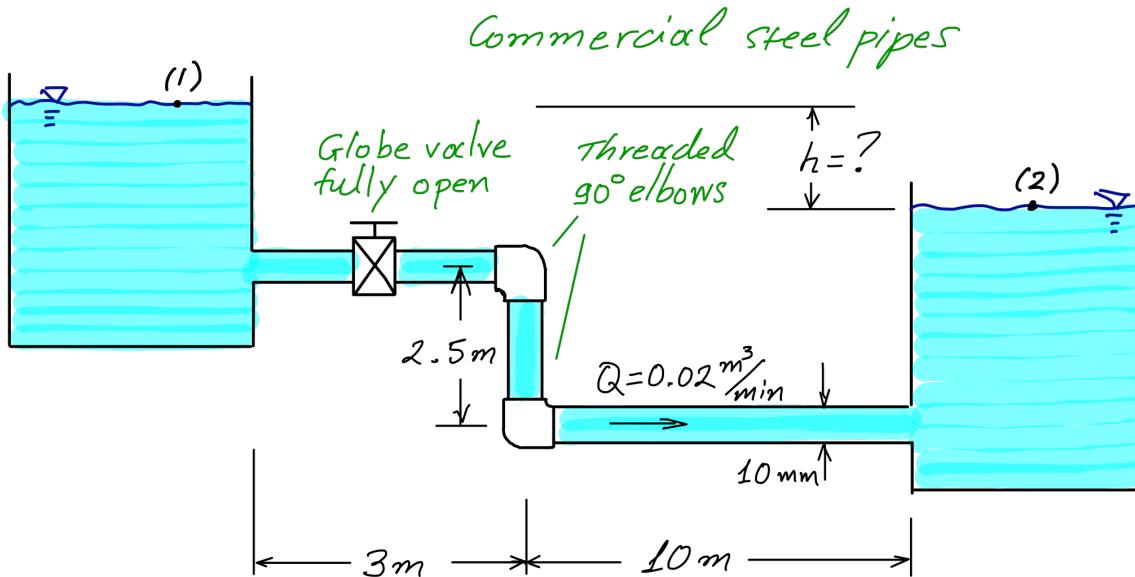
$$V = \frac{Q}{A} = \frac{0.02 \text{ m}^3/\text{min}}{\pi \times 0.005^2 \text{ m}^2} = 4.24 \text{ m/s}$$

$$Re = \frac{\rho V D}{\mu} = \frac{999 \times 4.24 \times 0.01}{1.12 \times 10^{-3}} = 3.7 \times 10^4$$

From Tables: commercial steel $\epsilon = 0.045 \text{ mm}$

$$\therefore \frac{\epsilon}{D} = \frac{0.045 \text{ mm}}{10 \text{ mm}} = 0.0045$$

From Colebrook's formula: $f = 0.032$



From tables:

$K_{ent} = 0.5$

$K_{valve} = 10$

$K_{elbow} = 1.5$

$K_{exit} = 1.0$

$$\begin{aligned}
 h_L &= \left[f \cdot \frac{L_{total}}{D} + K_{ent} + K_{valve} + 2K_{elbow} + K_{exit} \right] \frac{V^2}{2g} \\
 &= \left[0.032 \cdot \frac{15.5}{0.1} + 0.5 + 10 + 2 \cdot 1.5 + 1.0 \right] \frac{4.24^2}{2 \cdot 9.81} \text{ m} \\
 \Rightarrow h_L &= \underline{\underline{58.7 \text{ m}}}
 \end{aligned}$$

Non-circular pipes

Define hydraulic diameter, D_h

$$D_h = \frac{4A}{P} \quad P: \text{wetted perimeter}$$

Check for circular pipes: $D_h = \frac{4A}{P} = \frac{4 \cdot \frac{\pi D^2}{4}}{\pi D} = D \quad \checkmark$

Method: Work as for circular pipes using D_h as the equivalent diameter

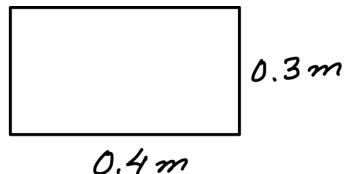
i.e., $h_L = f \frac{L}{D_h} \frac{V^2}{2g}$

$$Re_h = \frac{\rho V D_h}{\mu}$$

For laminar flow: $f = \frac{4}{Re_h}$ (from tables)

For turbulent flow: Use Moody's chart

Example



Commercial steel

Air-conditioning duct,
delivers $Q = 1 \text{ m}^3/\text{s}$ of air.

- What is the pressure drop per 10 m?

- How much more efficient is a circular duct?

$$D_h = \frac{4 \cdot A}{P} = \frac{4 \times (0.3 \text{ m} \times 0.4 \text{ m})}{2 \times (0.3 \text{ m} + 0.4 \text{ m})} = 0.343 \text{ m}$$

$$V = \frac{Q}{A} = \frac{1 \text{ m}^3/\text{s}}{0.3 \text{ m} \times 0.4 \text{ m}} = 8.33 \text{ m/s}$$

$$Re_h = \frac{\rho V D_h}{\mu} = \frac{1.23 \times 8.33 \times 0.343}{1.8 \times 10^{-5}} = 1.95 \times 10^5$$

$$\frac{E}{D_h} = \frac{0.000045}{0.343} = 0.00013$$

From Moody's chart: $f = 0.0168$

$$\therefore \Delta P = f \cdot \frac{L}{D_h} \cdot \frac{\rho V^2}{2} = 0.0168 \times \frac{10}{0.343} \times \frac{1.23 \times 8.33^2}{2}$$

$$\Rightarrow \underline{\underline{\Delta P = 20.9 \text{ N/m}^2}}$$

For a circular pipe with the same area:

$$\frac{\pi D^2}{4} = 0.3 \text{ m} \times 0.4 \text{ m} = 0.12 \text{ m}^2 \Rightarrow D = \sqrt{\frac{4 \times 0.12}{\pi}} = 0.391 \text{ m}$$

$$Re = \frac{CVD}{\mu} = \frac{1.23 \times 8.33 \times 0.391}{1.8 \times 10^{-5}} = 2.23 \times 10^5$$

$$\frac{\epsilon}{D} = \frac{0.000045}{0.391} = 0.00012$$

From Moody's chart: $f = 0.0165$

$$\Delta P = f \frac{\ell}{D} \frac{V^2}{2g} = 0.0165 \frac{10}{0.391} \cdot \frac{8.33^2}{2 \times 9.81} \text{ N/m}^2$$

$$\Rightarrow \underline{\underline{\Delta P = 18.0 \text{ N/m}^2}}$$

The circular pipe is $\frac{20.9 - 18.0}{20.9} = \underline{\underline{13.8\%}}$ more efficient

Single pipe problems

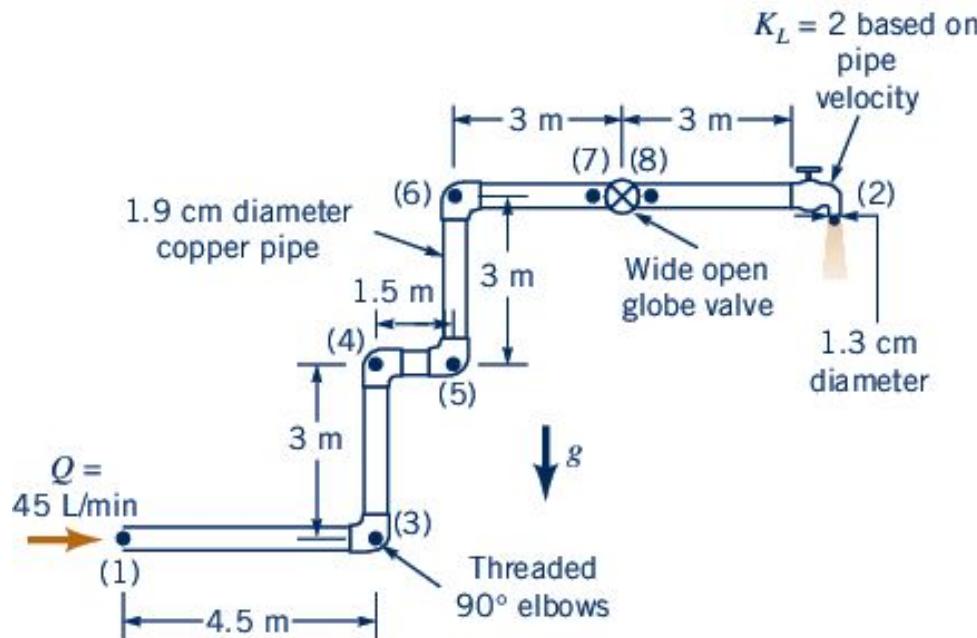
Method: Apply the **energy equation** between two convenient points in the flow system

$$h_L = \underbrace{\sum_i f_i \frac{l_i}{D_i} \frac{V_i^2}{2g}}_{\text{Major head losses}} + \underbrace{\sum_j k_{L_j} \frac{V_j^2}{2g}}_{\text{Minor head losses}}$$

Pipe Flow Type problems

Variable	Type I	Type II	Type III
a. Fluid			
Density	Given	Given	Given
Viscosity	Given	Given	Given
b. Pipe			
Diameter	Given	Given	Determine
Length	Given	Given	Given
Roughness	Given	Given	Given
c. Flow			
Flowrate or	Given	Determine	Given
Average Velocity			
d. Pressure			
Pressure Drop or	Determine	Given	Given
Head Loss			

Example - Type I problem (pressure drop unknown)



Water at 15 °C flows from the basement to the second floor and exits from a faucet. What is the pressure at point (1) if one takes into account

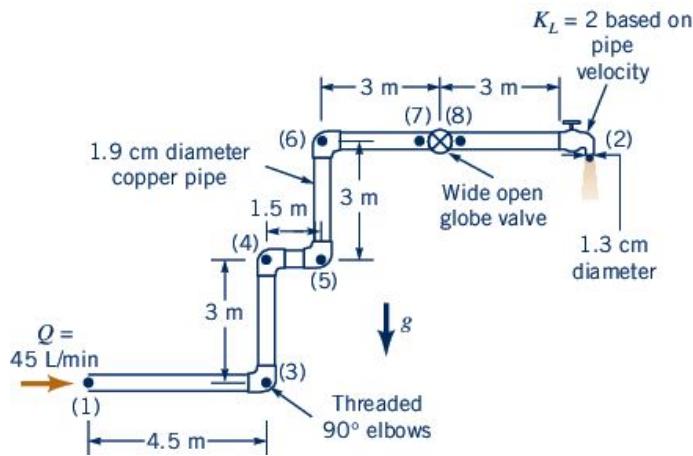
- (a) no losses
- (b) only major losses
- (c) both major and minor losses

$$v_1 = \frac{Q}{A_1} = \frac{7.5 \times 10^{-4} \text{ m}^3/\text{s}}{\pi \left(\frac{0.019}{4}\right)^2 \text{ m}^2} = 2.65 \text{ m/s}$$

$$v_2 = \frac{Q}{A_2} = \frac{7.5 \times 10^{-4} \text{ m}^3/\text{s}}{\pi \left(\frac{0.013}{4}\right)^2 \text{ m}^2} = 5.65 \text{ m/s}$$

$$Re = \frac{\rho v D}{\mu} = \frac{998.2 \text{ kg/m}^3 \times 2.65 \text{ m/s} \times 0.019 \text{ m}}{0.001002 \text{ Ns/m}^2} = 50100$$

Example - Type I problem (pressure drop unknown)



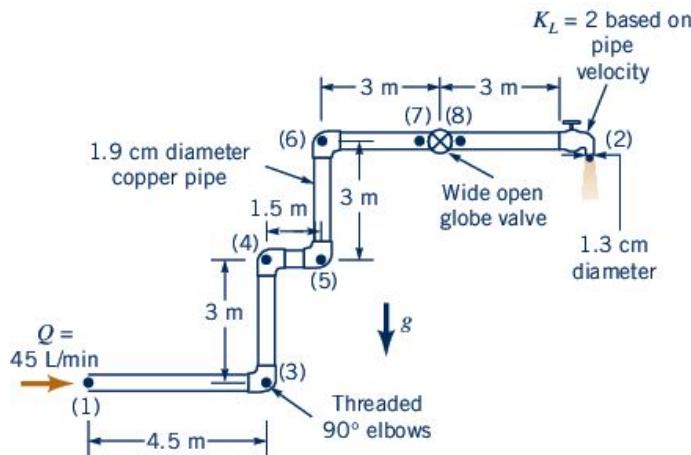
$$\frac{p_1}{\gamma} + \alpha_1 \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \alpha_2 \frac{v_2^2}{2g} + z_2 + h_l$$

Assume uniform velocity profile across pipe
→ $\alpha_1 = \alpha_2 = 1$

(a) No losses $\rightarrow h_i = 0$

$$\begin{aligned}
 p_1 &= \gamma(z_2 - z_1) + \frac{\rho}{2} (v_2^2 - v_1^2) \\
 &= 9.79 \text{ } kN/m^3 \text{ } 6 \text{ } m + \frac{989.2}{2} \text{ } kg/m^3 * (5.65^2 - 2.65^2) \text{ } m^2/s^2 \\
 &= (58.74 + 12.4) \text{ } kN/m^2 \\
 &\equiv 71 \text{ kPa}
 \end{aligned}$$

Example - Type I problem (pressure drop unknown)



$$\frac{p_1}{\gamma} + \alpha_1 \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \alpha_2 \frac{v_2^2}{2g} + z_2 + h_l$$

$$(b) \text{ Major losses} \rightarrow h_l = f \frac{l}{D} \frac{v_1^2}{2g}$$

From table: copper (drawn tubing): $\epsilon = 1.5 * 10^{-6} \text{ m} \rightarrow \epsilon/D = 8 * 10^{-5}$

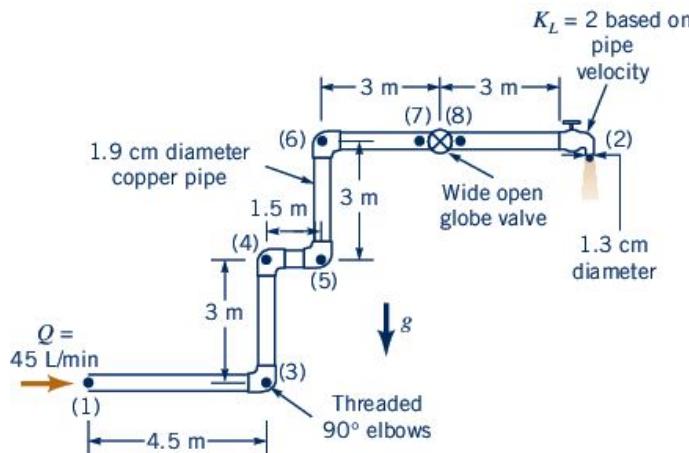
Moody's chart with $\epsilon/D = 8 * 10^{-5}$ and $Re=50100 \rightarrow f=0.0215$

$$p_1 = \gamma(z_2 - z_1) + \frac{\rho}{2} (v_2^2 - v_1^2) + \rho f \frac{l}{D} \frac{v_1^2}{2}$$

$$= 71 \text{ kPa} + 998.2 \frac{kg}{m^3} * 0.0215 * \left(\frac{18}{0.019} m\right) * \frac{2.65^2}{2} \frac{m^2}{s^2}$$

$$= 143 \text{ kPa}$$

Example - Type I problem (pressure drop unknown)



$$\frac{p_1}{\gamma} + \alpha_1 \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \alpha_2 \frac{v_2^2}{2g} + z_2 + h_l$$

(c) Major + minor losses $\rightarrow h_l = f \frac{l}{D} \frac{v_1^2}{2g} + \sum K_l \frac{v^2}{2g}$

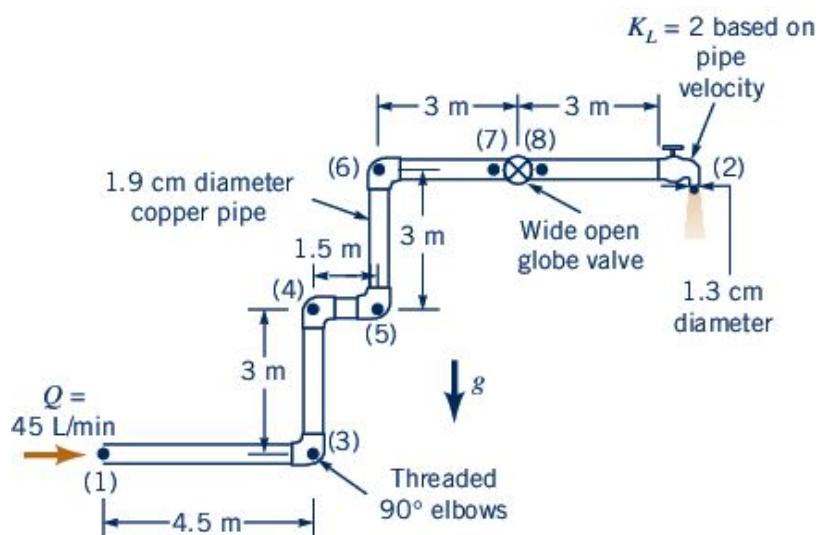
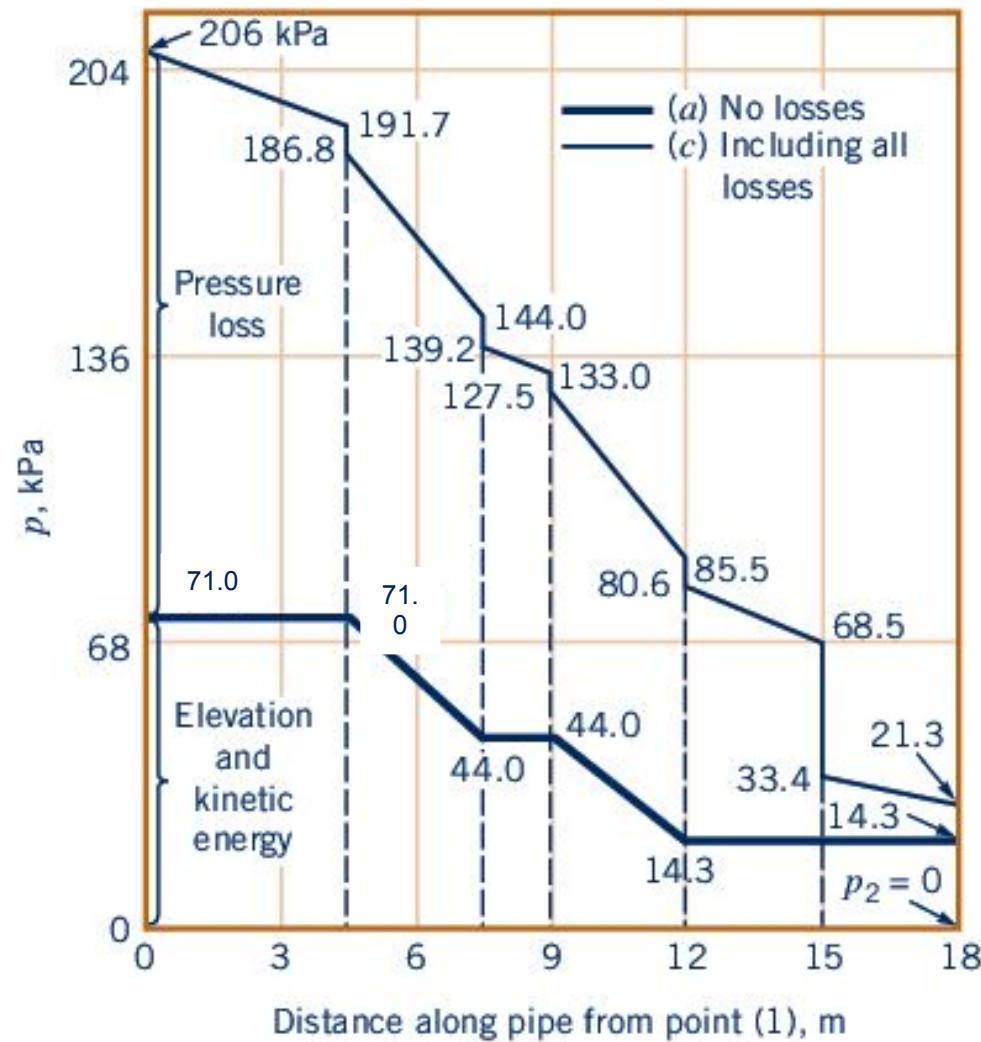
From table: Loss coefficient for wide open globe valve = 10
 Loss coefficient for elbow = 1.5

$$p_1 = \gamma(z_2 - z_1) + \frac{\rho}{2} (v_2^2 - v_1^2) + \rho f \frac{l}{D} \frac{v_1^2}{2} + \sum \rho K_l \frac{v^2}{2}$$

$$= 143 \text{ kPa} + 998.2 \frac{\text{kg}}{\text{m}^3} * \frac{2.65^2}{2} \frac{\text{m}^2}{\text{s}^2} * (10 + 4 * 1.5 + 2)$$

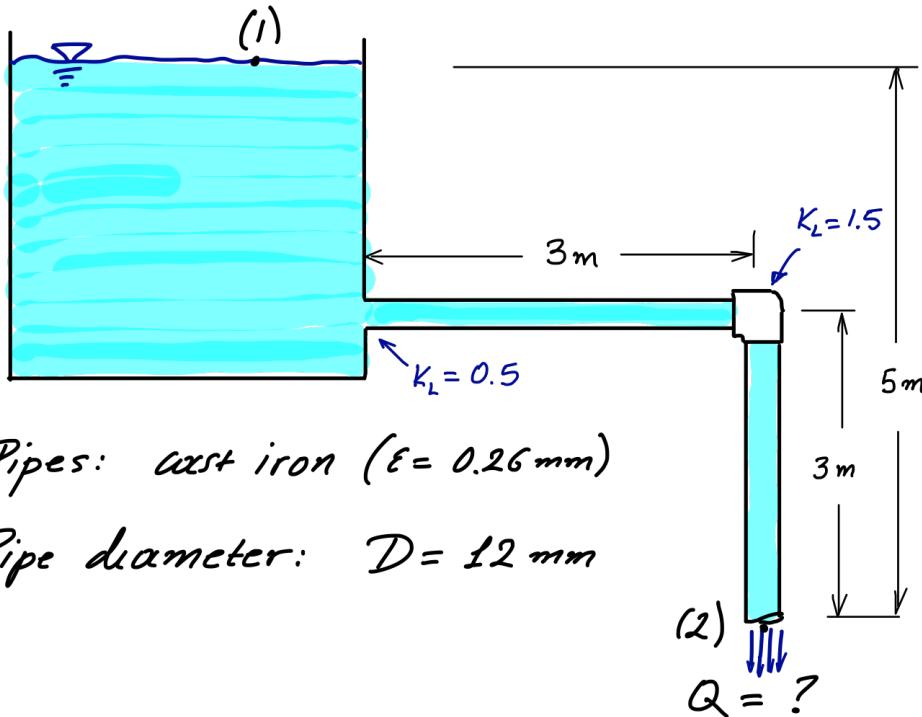
$$= 206 \text{ kPa}$$

Example - Type I problem (pressure drop unknown)



Location: (1) (3) (4) (5) (6) (7)(8) (2)

Example - Type II problem (flow unknown)



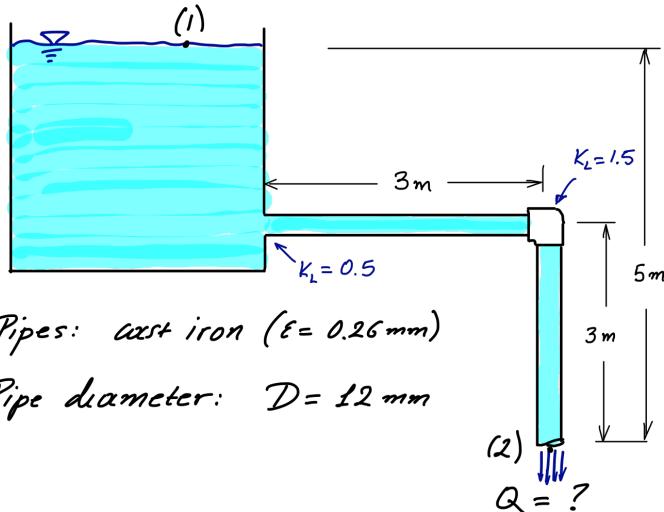
Pipes: cast iron ($\epsilon = 0.26 \text{ mm}$)

Pipe diameter: $D = 12 \text{ mm}$

$$\cancel{\frac{P_1}{\delta}} + \cancel{\frac{V_1^2}{2g}} + z_1 = \cancel{\frac{P_2}{\delta}} + \cancel{\frac{V_2^2}{2g}} + z_2 + h_L$$

$$\Rightarrow z_1 - z_2 = \frac{V_2^2}{2g} + h_L \quad V_2 = V$$

$$h_L = f \frac{l}{D} \frac{V^2}{2g} + \sum k_L \frac{V^2}{2g} = \left(f \frac{l}{D} + \sum k_L \right) \frac{V^2}{2g}$$



Pipes: cast iron ($\epsilon = 0.26 \text{ mm}$)

Pipe diameter: $D = 12 \text{ mm}$

$$\therefore z_1 - z_2 = \left(1 + f \frac{L}{D} + \sum K_L \right) \frac{V^2}{2g}$$

$$\Rightarrow 5 = \left(1 + f \frac{6}{0.012} + (0.5 + 1.5) \right) \frac{V^2}{2 \times 9.81}$$

$$\Rightarrow V = \sqrt{\frac{98.1}{3 + 500f}} \quad (2)$$

$$Re = \frac{\rho V D}{\mu} = \frac{999 \times V \cdot 0.012}{1.12 \times 10^{-3}} = 10.7 \times 10^3 \cdot V \quad \Rightarrow \underline{\underline{Re = 10'700 \cdot V}} \quad (2)$$

Procedure:

- 1) Assume an f value (usually $f=0.02$)
- 2) Calculate V (eq. 1)
- 3) Calculate Re (eq. 2)
- 4) Calculate f (Moody chart)
- 5) Repeat steps 2 to 4 until convergence (no change in f)

Apply procedure: 1) $f = 0.02$

$$2) V = \sqrt{\frac{98.1}{3 + 500 \times 0.02}} = 2.75 \text{ m/s}$$

$$3) Re = 10700 \times 2.75 = 2.94 \times 10^4$$

$$4) \frac{E}{D} = \frac{0.26 \text{ mm}}{12 \text{ mm}} = 0.0217$$

From Moody's chart: $f = 0.050$ ($\neq 0.02$)

Repeat procedure: 1) $f = 0.050$

$$2) V = \sqrt{\frac{98.1}{3 + 500 \times 0.05}} = 1.87 \text{ m/s}$$

$$3) Re = 10700 \times 1.87 = 2.00 \times 10^4$$

4) From Moody's chart: $f = 0.051$ ($\neq 0.050$)

Repeat: 1) $f = 0.051$

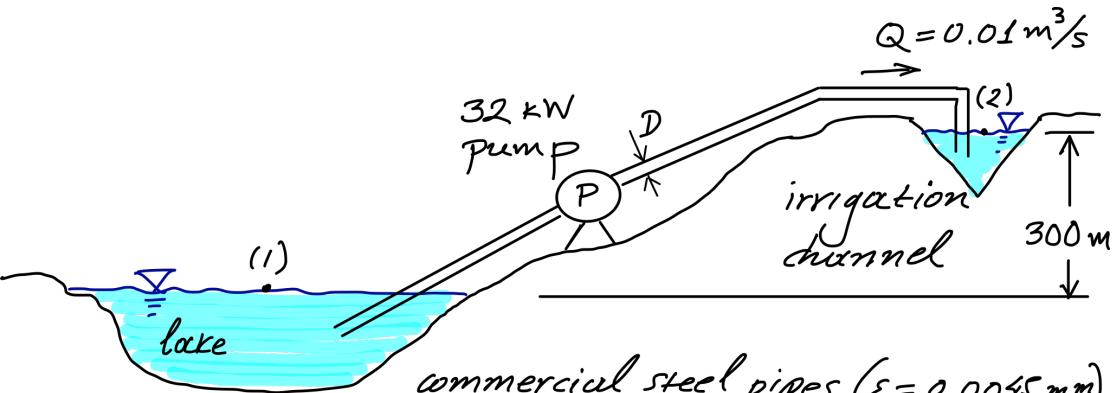
$$2) V = \sqrt{\frac{98.1}{3 + 500 \times 0.051}} = 1.86 \text{ m/s}$$

$$3) Re = 10700 \times 1.86 = 1.99 \times 10^4$$

4) From Moody's chart: $f = 0.051$ *Converged!*

$$Q = A \cdot V = \pi \times 0.006^2 \text{ m}^2 \times 1.86 \text{ m/s} = \underline{\underline{2.10 \times 10^{-4} \text{ m/s}}}$$

Example - Type III problem (diameter unknown)



commercial steel pipes ($\epsilon = 0.0045 \text{ mm}$)

pipe length: 2 km

Neglect minor losses

$$\text{Energy: } \frac{P}{\gamma g} + \frac{V_1^2}{2g} + z_1 + h_p = \frac{P_2}{\gamma g} + \frac{V_2^2}{2g} + z_2 + h_L$$

$$\Rightarrow h_p - (z_2 - z_1) = f \frac{\ell}{D} \frac{V^2}{2g}$$

$$\Rightarrow 326 \text{ m} - 300 \text{ m} = f \cdot \frac{2000}{D} \cdot \frac{\left(\frac{Q}{\pi D^2/4}\right)^2}{2 \times 9.81}$$

$$\Rightarrow 0.2044 = \frac{f \cdot Q^2}{D^5} = \frac{f \cdot (0.01)^2}{D^5}$$

$$\Rightarrow \underline{\underline{D = (4.89 \times 10^{-4} \times f)^{1/5}}} \quad (1)$$

$$h_p = \frac{W}{\gamma Q} = \frac{32000 \text{ N} \cdot \text{m/s}}{9800 \text{ N/m}^3 \cdot 0.01 \text{ m}^3/\text{s}} = 326 \text{ m}$$

$$Re = \frac{\rho V D}{\mu} = \frac{\rho \frac{Q}{\pi D^2/4} D}{\mu} = \frac{4 \rho Q}{\pi \mu D} = \frac{4 \times 999 \times 0.01}{\pi \times 1.12 \times 10^3 \cdot D}$$

$$\Rightarrow Re = \frac{1.14 \times 10^4}{D} \quad (2)$$

$$\frac{\epsilon}{D} = \frac{0.045 \times 10^{-3}}{D} \quad (3)$$

Iterative procedure:

Assume $f = 0.02$

$$(1) \Rightarrow D = 0.0996 \text{ m}$$

$$(2) \Rightarrow Re = 1.145 \times 10^5$$

$$(3) \Rightarrow \epsilon/D = 0.000452$$

Moody's chart $\Rightarrow f = 0.0198$ (close to 0.02)

Repeat: (1) $\Rightarrow D = 0.0994 \text{ m}$

$$(2) \Rightarrow Re = 1.15 \times 10^5$$

$$(3) \Rightarrow \epsilon/D = 0.000453$$

Moody's chart $\Rightarrow \underline{f = 0.0198}$ converged

$\therefore D = 0.0994 \text{ m}$ or $\underline{\underline{D = 9.94 \text{ cm}}}$